Cellulolytic thermophilic microorganisms in white biotechnology: a review

  • Kalpana SahooEmail author
  • Rajesh Kumar Sahoo
  • Mahendra Gaur
  • Enketeswara Subudhi


Enzymes of microbial origin are of immense importance for organic material decomposition leading to bioremediation of organic waste, bioenergy generation, large-scale industrial bioprocesses, etc. The market demand for microbial cellulase enzyme is growing more rapidly which ultimately becomes the driving force towards research on this biocatalyst, widely used in various industrial activities. The use of novel cellulase genes obtained from various thermophiles through metagenomics and genetic engineering as well as following metabolic engineering pathways would be able to enhance the production of thermophilic cellulase at industrial scale. The present review is mainly focused on thermophilic cellulolytic bacteria, discoveries on cellulase gene, genetically modified cellulase, metabolic engineering, and their various industrial applications. A lot of lacunae are yet to overcome for thermophiles such as metagenome analysis, metabolic pathway modification study, search of heterologous hosts in gene expression system, and improved recombinant strain for better cellulase yield as well as value-added product formation.


Funding information

The authors are thankful to the funding agency “Science and Engineering Research Board (SERB), New Delhi (YSS/2014/000413) to carry out the research work.


  1. Acharya S, Chaudhary A (2012a) Alkaline cellulase produced by a newly isolated thermophilic Aneurinibacillus thermoaerophilus WBS2 from hot spring, India. Afr J Microbiol Res 6(26):5453–5458Google Scholar
  2. Acharya S, Chaudhary A (2012b) Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz Arch Biol Technol 55:497–503CrossRefGoogle Scholar
  3. Acharya S, Chaudhary A (2012c) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43:844–856CrossRefPubMedPubMedCentralGoogle Scholar
  4. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139CrossRefPubMedPubMedCentralGoogle Scholar
  5. Agrawal S (2014) Cellulases of bacterial origin and their applications: a review. Int J Sci Res 3:1652–1655Google Scholar
  6. Aksenova HY, Rainey FA, Janssen PH, et al (1992) Spirochaeta thermophila sp. nov., an Obligately Anaerobic, Polysaccharolytic, Extremely Thermophilic Bacterium. Int J Syst Bacteriol 42:175–177Google Scholar
  7. Ali S, Hall J, Soole KL, et al (1995) Targeted expression of microbial cellulases in transgenic animals. In: Progress in Biotechnology. pp 279–293Google Scholar
  8. Alvarez TM, Paiva JH, Ruiz DM, Cairo JPLF, Pereira IO, Paixão DAA, de Almeida RF, Tonoli CCC, Ruller R, Santos CR, Squina FM, Murakami MT (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One.
  9. Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V (2013) Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol Lett 339:93–101CrossRefPubMedGoogle Scholar
  10. Anbar M, Bayer EA (2012) Approaches for improving thermostability characteristics in cellulases. Methods in enzymology 510:261–271Google Scholar
  11. Ando S, Ishida H, Kosugi Y, Ishikawa K (2002) Hyperthermostable Endoglucanase from Pyrococcus horikoshii. Appl Env Microbiol 68:430–433Google Scholar
  12. Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T (2013) Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr Polym 94:409–415Google Scholar
  13. Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva GMM, Moura LMS, Epamino GWC, Digiampietri LA, Lombardi KC, Ramos PL, Quaggio RB, de Oliveira JCF, Pascon RC, Cruz JB, da Silva AM, Setubal JC (2016) Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 6:38915CrossRefPubMedPubMedCentralGoogle Scholar
  14. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294CrossRefPubMedPubMedCentralGoogle Scholar
  15. Attri S, Garg G (2014) Isolation of microorganisms simultaneously producing xylanase, pectinase and cellulase enzymes using cost effective substrates. J Innov Biol 1:45–50Google Scholar
  16. Azizi M, Hemmat J, Seifati SM, Torktaz I, Karimi S (2015) Characterization of a thermostable endoglucanase produced by Isoptericola variabilis sp. IDAH9. Braz J Microbiol 46:1225–1234CrossRefPubMedPubMedCentralGoogle Scholar
  17. Baharuddin AS, Razak MNA, Hock LS et al (2010) Isolation and characterization of thermophilic cellulase-producing bacteria from empty fruit bunches-palm oil mill effluent compost. Am J Appl Sci 7:56–62CrossRefGoogle Scholar
  18. Bahrami A, Shojaosadati SA, Mohebali G (2001) Biodegradation of dibenzothiophene by thermophilic bacteria. Biotechnol Lett 23:899–901CrossRefGoogle Scholar
  19. Bai S, Ravi M, Mukesh DJ, et al (2012) Cellulase Production by Bacillus subtilis isolated from Cow Dung. Sch Res Libr 4:269–279Google Scholar
  20. Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157Google Scholar
  21. Bakare MK, Adewale IO, Shonukan OO (2005) Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. Afr J Biotechnol 4:898–904Google Scholar
  22. Bala A, Singh B (2016) Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst Eng 39:181–191Google Scholar
  23. Barabote RD, Xie G, Leu DH, et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus IIB provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1042Google Scholar
  24. Bashir Y, Singh SP, Konwar BK (2014) Metagenomics: an application based perspective. Chinese J Biol 1–7.
  25. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107(6):2098–2107CrossRefPubMedGoogle Scholar
  26. Beauchemin K, Yang W, Rode L (2003) Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. J Dairy Sci 86:630–643CrossRefPubMedGoogle Scholar
  27. Bee H (2005) Studies on plant growth promoting bacteria and recycling of crop residues for sustainable agriculture. PhD Thesis Submitted to Osmania UniversityGoogle Scholar
  28. Belaich A, Parsiegla G, Gal L, Villard C, Haser R, Belaich JP (2002) Cel9M, a New Family 9 Cellulase of the Clostridium cellulolyticum Cellulosome. Jol of Bact. 184(5):1378–1384Google Scholar
  29. Berger E, Zhang D, Zverlov VV, Schwarz WH (2007) Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 268:194–201CrossRefPubMedGoogle Scholar
  30. Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D’haeseleer P, Simmons BA, Quirino BF (2014) Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiology 351(2):147–155Google Scholar
  31. Bergquist PL, Gibbs MD, Morris DD, te'o VSJ, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110CrossRefGoogle Scholar
  32. Beukes N, Pletschke BI (2006) Effect of sulfur-containing compounds on Bacillus cellulosome-associated “CMCase” and “Avicelase” activities. FEMS Microbiol Lett 264:226–231CrossRefPubMedGoogle Scholar
  33. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  34. Bhatia S, Batra N, Pathak A et al (2015) Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of Manikaran, India. Genome Announc 3:e01544–e01514CrossRefPubMedPubMedCentralGoogle Scholar
  35. Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37:1117–1129CrossRefPubMedGoogle Scholar
  36. Biswas R (2014) Production of cellulolytic enzymes. In: Bioprocessing of renewable resources to commodity bioproducts, First Edition. John Wiley & Sons, Inc. Publisher 105-132Google Scholar
  37. Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781PubMedPubMedCentralGoogle Scholar
  38. Bouraoui H, Desrousseaux M-L, Ioannou E, Alvira P, Manaï M, Rémond C, Dumon C, Fernandez-Fuentes N, O’Donohue MJ (2016) The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. Biotechnol Biofuels 9:140CrossRefPubMedPubMedCentralGoogle Scholar
  39. Bredholt S, Mathrani IM, Ahring BK (1995) Extremely thermophilic cellulolytic anaerobes from icelandic hot springs. Antonie Van Leeuwenhoek 68:263–271CrossRefPubMedGoogle Scholar
  40. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489CrossRefPubMedGoogle Scholar
  41. Bronnenmeier K, Staudenbauer WL (1990) Cellulose hydrolysis by a highly thermostable endo-l,4-p-glucanase (Avicelase I) from Clostridium stercoraritirn. Enzym Microb Technol 12:431–436CrossRefGoogle Scholar
  42. Bronnenmeier K, Rucknagel KP, Staudenbauer WL (1991) Purification and properties of a novel type of exo-1,4-beta glucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 200:379–385CrossRefPubMedGoogle Scholar
  43. Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61(4):1399–1407PubMedPubMedCentralGoogle Scholar
  44. Chakraborty A, Mahajan A (2014) Cellulase activity enhancement of bacteria isolated from oil-pump soil using substrate and medium optimization. Am J Microbiol Res 2:52–56CrossRefGoogle Scholar
  45. Chandrashekar R, Curtis KC, Rawot BW, Kobayashi GS, Weil GJ (1997) Molecular Cloning and Characterization of a Recombinant Histoplasma capsulatum Antigen for Antibody-Based Diagnosis of Human Histoplasmosis. J Clin Micro 35 (5): 1071–1076Chandrashekar R, Curtis KC, Rawot BW, Kobayashi GS, Weil GJ (1997) Molecular Cloning and Characterization of a Recombinant Histoplasma capsulatum Antigen for Antibody-Based Diagnosis of Human Histoplasmosis. J Clin Micro 35 (5): 1071–1076Google Scholar
  46. Chang CJ, Lee CC, Te Chan Y et al (2016) Exploring the mechanism responsible for cellulase thermostability by structure-guided recombination. PLoS One 11:e0147485. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci 111:8931–8936CrossRefPubMedGoogle Scholar
  48. Clemente-Jiminez JM, Mingorance-Cazorla L, MartÖNez-Rodriguez S et al (2005) Influence of sequential mixtures on wine fermentation. Int J Food Microbiol 98:301–308CrossRefGoogle Scholar
  49. Conway de Macario E, Macario AJ (2000) Stressors, stress and survival: overview. Front Biosci 5:780–786CrossRefGoogle Scholar
  50. Couturier M, Feliu J, Haon M, Navarro D, Lesage-Meessen L, Coutinho PM, Berrin JG (2011) A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microbial Cell Factories 10:103Google Scholar
  51. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408CrossRefPubMedGoogle Scholar
  52. Dahal S, Poudel S, Thompson RA (2017) Genome-scale modeling of thermophilic microorganisms. Adv Biochem Eng Biotechnol 160:103–119PubMedGoogle Scholar
  53. de Carvalho LMJ, de Castro IM, da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro- and ultra-filtration. J Food Eng 87:447–454CrossRefGoogle Scholar
  54. Deka D, Bhargavi P, Sharma A, Goyal D, Jawed M, Goyal A (2011) Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme Res 2011:1–8CrossRefGoogle Scholar
  55. Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151CrossRefPubMedGoogle Scholar
  56. Dinçer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14CrossRefGoogle Scholar
  57. Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256CrossRefPubMedGoogle Scholar
  58. Eichorst SA, Varanasi P, Stavila V, Zemla M, Auer M, Singh S, Simmons BA, Singer SW (2013) Community dynamics of cellulose-adapted thermophilic bacterial consortia. Environ Microbiol 15:2573–2587CrossRefPubMedGoogle Scholar
  59. Fang ZG, Ouyang ZY (2010) Cellulose degradation and ethanol production of different Clostridium strain. Huan Jing Ke Xue 31(8):1926–1931PubMedGoogle Scholar
  60. Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, et al. (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193(11):2906–2907Google Scholar
  61. Frock AD, Kelly RM (2012) Extreme thermophiles: moving beyond single-enzyme biocatalysis. Curr Opin Chem Eng 1:363–372CrossRefPubMedPubMedCentralGoogle Scholar
  62. Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31:581–593CrossRefPubMedGoogle Scholar
  63. Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19CrossRefPubMedPubMedCentralGoogle Scholar
  64. Gautam R, Sharma J (2014) Production and optimization of alkaline cellulase from bacillus subtilis in submerged fermentation. Int J Sci Res 3:1186–1194Google Scholar
  65. Girfoglio M, Rossi M, Cannio R (2012) Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J Bacteriol 194:5091–5100CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:566CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gupta V (2016) Microbial cellulase system properties and applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier PublisherGoogle Scholar
  68. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34CrossRefPubMedGoogle Scholar
  69. Hall J, Ali S, Surani MA, Hazlewood GP, Clark AJ, Simons JP, Hirst BH, Gilbert HJ (1993) Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice. Biotechnology (N Y) 11:376–379CrossRefGoogle Scholar
  70. Halldórsdóttir S, Thórólfsdóttir ET, Spilliaert R et al (1998) Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl Microbiol Biotechnol 49:277–284CrossRefPubMedGoogle Scholar
  71. Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from obsidian pool, yellowstone National Park. Appl Environ Microbiol 76:1014–1020CrossRefPubMedGoogle Scholar
  72. Hanafy EA, Zaghloul RA, Abou-Aly HE, Ahmed AE (2011) Isolation and identification of cellulases producing thermophilic bacteria and their ability to produce xylanase enzymes. Ann Agric Sci Moshtohor 49(4):455–461Google Scholar
  73. Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161:301–312CrossRefPubMedGoogle Scholar
  74. Hasegawa S, Maier VP, King AD (1974) Isolation of new limonoate dehydrogenase from Pseudomonas. J Agric Food Chem 22:523–526CrossRefPubMedGoogle Scholar
  75. Hasegawa, S., Kim A, et al (1975) Biochemistry of limonoids. A new limonoid debittering enzyme. In: Citrus research conference Pasadena CAGoogle Scholar
  76. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467CrossRefPubMedGoogle Scholar
  77. Hiras J, Wu YW, Deng K, et al (2016) Comparative community proteomics demonstrates the unexpected importance of actinobacterial glycoside hydrolase family 12 protein for crystalline cellulose hydrolysis. MBio 7(4):e01106–16.
  78. Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Cho SJ, Kim H, Yun HD (2007) Construction of the bifunctional enzyme cellulase-β-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Lett 29(6):931–936CrossRefPubMedGoogle Scholar
  79. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Boil 3:39–46CrossRefGoogle Scholar
  80. Hreggvidsson GO, Kaiste E, Holst O et al (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62(8):3047–3049Google Scholar
  81. Huang XP, Monk C (2004) Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World J Microbiol Biotechnol 20:85–92CrossRefGoogle Scholar
  82. Huang Y, Krauss G, Cottaz S et al (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588CrossRefPubMedPubMedCentralGoogle Scholar
  83. Izquierdo JA, Sizova MV, Lynd LR (2010) Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 76:3545–3553CrossRefPubMedPubMedCentralGoogle Scholar
  84. Jampala P, Tadikamalla S, Preethi M et al (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7:–14Google Scholar
  85. Jurick WM II, Vico I, Whitaker BD, Gaskins VL, Janisiewicz WJ (2012) Application of the 2-cyanoacetamide method for spectrophotometric assay of cellulase enzyme activity. Plant Pathol J 11:38–41CrossRefGoogle Scholar
  86. Kaper T, Lebbink JH, Pouwels J et al (2000) Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus. Biochemistry 39:5097–5103CrossRefGoogle Scholar
  87. Karmakar M, Ray RR (2011) Current trends in research and applications of microbial cellulases. Res J Microbiol 6:41–53CrossRefGoogle Scholar
  88. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507CrossRefPubMedGoogle Scholar
  89. Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155CrossRefPubMedGoogle Scholar
  90. Kazeem MO, Shah UKM, Baharuddin AS, Abdul Rahman NA (2016) Enhanced cellulase production by a novel thermophilic bacillus licheniformis 2D55: characterization and application in lignocellulosic saccharification. BioResources 11:5404–5423CrossRefGoogle Scholar
  91. Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312CrossRefPubMedGoogle Scholar
  92. Khatiwada P, Ahmed J, Sohag MH et al (2016) Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes. J Bioprocess Biotech 6:4–8Google Scholar
  93. Kim DS, Kim CH (1992) Production and characterization of crystalline cellulose-degrading cellulase components from a thermophilic and moderately alkalophilic bacterium. J Microbiol Biotechnol 2:7–13Google Scholar
  94. Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51CrossRefPubMedGoogle Scholar
  95. Kim MK, Kang TH, Kim J, Kim H, Yun HD (2012) Evidence showing duplication and recombination of cell genes in tandem from hyperthermophilic Thermotoga sp. Appl Biochem Biotechnol 168:1834–1848CrossRefPubMedGoogle Scholar
  96. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 1:1–10CrossRefGoogle Scholar
  97. Kumar S, Srivastava N, Sen Gupta B et al (2014) Lovastatin production by Aspergillus terreus using lignocellulose biomass in large scale packed bed reactor. Food Bioprod Process 92:416–424CrossRefGoogle Scholar
  98. Kumar V, Sangwan P, Singh D, Gill PK (2014a) Global scenario of industrial enzyme market. In: Industrial enzymes: trends, scope and relevance. Pp. 173-196. ISBN:978-1-63321-338-8. Nova Science Publishers, IncGoogle Scholar
  99. Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL (2015) Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotechnol 18:110–115CrossRefGoogle Scholar
  100. Laitila A, Sweins H, Vilpola A, Kotaviita E, Olkku J, Home S, Haikara A (2006) Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J Agric Food Chem 54:3840–3851CrossRefPubMedGoogle Scholar
  101. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:1–15CrossRefGoogle Scholar
  102. Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp nov, an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168(2):114–119CrossRefPubMedGoogle Scholar
  103. Leis B, Heinze S, Angelov A et al (2015a) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a Deep-Sea Archaeon. Front Bioeng Biotechnol 3:95CrossRefPubMedPubMedCentralGoogle Scholar
  104. Leis B, Heinze S, Angelov A, Pham VT, Thürmer A, Jebbar M, Golyshin PN, Streit WR, Daniel R, Liebl W (2015b) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon. Front Bioeng Biotechnol 3:95CrossRefPubMedPubMedCentralGoogle Scholar
  105. Levin DB, Carere CR, Cicek N, Sparling R (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrog Energy 34:7390–7403CrossRefGoogle Scholar
  106. Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201CrossRefPubMedGoogle Scholar
  107. Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 5:2CrossRefPubMedPubMedCentralGoogle Scholar
  108. Liang Y, Yesuf J, Feng Z (2010) Toward plant cell wall degradation under thermophilic condition: a unique microbial community developed originally from swine waste. Appl Biochem Biotechnol 161:147–156CrossRefPubMedGoogle Scholar
  109. Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1 BioMed Research International. 1-13.
  110. Lin L, Xu J (2013) Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv 31:827–837CrossRefPubMedGoogle Scholar
  111. Liu SL, Du K, Chen WZ et al (2012) Effective approach to greatly enhancing selective secretion and expression of three cytoplasmic enzymes in Escherichia coli through synergistic effect of EDTA and lysozyme. J Ind Microbiol Biotechnol 39:1301–1307CrossRefPubMedGoogle Scholar
  112. Lv W, Yu Z (2012) Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. J Appl Microbiol 114:1001–1007CrossRefGoogle Scholar
  113. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516CrossRefPubMedPubMedCentralGoogle Scholar
  114. Makky EA (2009) Avicelase production by a thermophilic Geobacillus stearothermophilus isolated from soil using sugarcane bagasse. World Acad Sci Eng Technol 3:469–473Google Scholar
  115. Makky EA, Abdel-Ghany TM (2009) Cellulases applications in biological de-inking of old newspaper wastes as carbon source produced by Bacillus subtilis. Egypt J Exp Biol (Bot) 5:85–89Google Scholar
  116. Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B (2000) Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol 83(3):177–187CrossRefPubMedGoogle Scholar
  117. Mazzoli R (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks. Comput Struct Biotechnol J 3(4):1–9 e201210007 CrossRefGoogle Scholar
  118. Mazzoli R, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30:111–119CrossRefPubMedGoogle Scholar
  119. McCarter SL, Adney WS, Vinzant TB et al (2002) Exploration of cellulose surface-binding properties of Acidothermus cellulolyticus Cel5A by site-specific mutagenesis. Appl Biochem Biotechnol 98–100:273–287. CrossRefPubMedGoogle Scholar
  120. Menendez E, Garcia-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2(3):163–182CrossRefGoogle Scholar
  121. Meng F, Ma L, Ji S, Yang W, Cao B (2014) Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett Appl Microbiol 59:306–312CrossRefPubMedGoogle Scholar
  122. Mg Mg ZL, Than WM, Myint M (2015) Study on the cellulase enzyme producing activity of bacteria isolated from manure waste and degrading soil. Inter J Tech Res Appl 3:165–169Google Scholar
  123. Mingardon F, Bagert JD, Maisonnier C, Trudeau DL, Arnold FH (2011) Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl Environ Microbiol 77(4):1436–1442CrossRefPubMedGoogle Scholar
  124. Mohagheghi A, Grohmann K, Himmel M et al (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36:435–443CrossRefGoogle Scholar
  125. Morag (Morgenstern) E, Bayer EA, Lamed R (1992) Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzym Microb Technol 14:289–292CrossRefGoogle Scholar
  126. Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1(5):e00285–10.
  127. Morais S, Stern J, Kahn A et al (2016) Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnol Biofuels 9:164CrossRefPubMedPubMedCentralGoogle Scholar
  128. Moreno R, Zafra O, Cava F, Berenguer J (2003) Development of a gene expression vector for Thermus thermophilus based on the promoter of the respiratory nitrate reductase. Plasmid 49:2–8CrossRefPubMedGoogle Scholar
  129. Mori T, Kamei I, Hirai H, Kondo R (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springerplus 3:365CrossRefPubMedPubMedCentralGoogle Scholar
  130. Mortabit D, Zyani M, Saad IK (2014) Improvement of olive oil quality of moroccan picholine by bacillus licheniformis enzyme’s preparation. Int J Pure Appl Sci Technol 20(2):44–52Google Scholar
  131. Munjal N, Jawed K, Wajid S, Yazdani SS (2015) A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. PLoS One 10:e0119917CrossRefPubMedPubMedCentralGoogle Scholar
  132. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331CrossRefPubMedGoogle Scholar
  133. Norsalwani TLT, Norulaini NAN (2012) Utilization of lignocellulosic wastes as a carbon source for the production of bacterial cellulases under solid state fermentation. Int J Environ Sci Dev 3:136–140CrossRefGoogle Scholar
  134. Nugroho IB, Handayani NSN (2016) Primer design and in silico analysis using CLUSTALW and MUSCLE for L-arabinose isomerase (araA) gene detection in thermophilic bacteria. In: AIP Conference ProceedingsGoogle Scholar
  135. O’Neill GP, Kilburn DG, Warren RA, Miller RC Jr (1986) Overproduction from a cellulase gene with a high guanosine-plus-cytosine content in Escherichia coli. Appl Environ Microbiol 52:737–743PubMedPubMedCentralGoogle Scholar
  136. Oh YK, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367CrossRefPubMedGoogle Scholar
  137. Otajevwo FD, Aluyi HSA (2011) Cultural conditions necessary for optimal cellulase yield by cellulolytic bacterial organisms as they relate to residual sugars released in broth medium. Mod Appl Sci 5:141–151Google Scholar
  138. Padilha IQM, Carvalho LCT, Dias PVS, Grisi TCSL, Silva FLH, Santos SFM, Araújo DAM (2015) Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz J Chem Eng 32:35–42CrossRefGoogle Scholar
  139. Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D'haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:e37010. CrossRefPubMedPubMedCentralGoogle Scholar
  140. Peerapong P, Pornwongthong P, Muenmuang C, Phusantisampan T, Sriariyanun M (2017) Effect of cellulase-producing microbial consortium on biogas production from lignocellulosic biomass. Energy Procedia 141:180–183CrossRefGoogle Scholar
  141. Pérez-Avalos O, Sánchez-Herrera LM, Salgado LM, Ponce-Noyola T (2008) A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr Microbiol 57:39–44Google Scholar
  142. Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255CrossRefPubMedGoogle Scholar
  143. Podosokorskaya OA, Merkel YA, Kolganova TV et al (2011) Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 61:2697–2701CrossRefPubMedGoogle Scholar
  144. Raman B, McKeown CK, Rodriguez M Jr, Brown SD, Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11:134CrossRefPubMedPubMedCentralGoogle Scholar
  145. Ramasamy P, Sharmilli A (2016) Thermophilic bacteria as a source of novel polymers for biotechnological applications. J Adv Biol Biotechnol 6:1–16CrossRefGoogle Scholar
  146. Renouf V, Falcou M, Miot-Sertier C, Perello MC, de Revel G, Lonvaud-Funel A (2006) Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. J Appl Microbiol 100:1208–1219CrossRefPubMedGoogle Scholar
  147. Report on: technical enzymes market by type, application and by region, 2016Google Scholar
  148. Romaniec MP, Fauth U, Kobayashi T et al (1992) Purification and characterization of a new endoglucanase from Clostridium thermocellum. Biochem J 283:69–73CrossRefPubMedPubMedCentralGoogle Scholar
  149. Ruttersmith LD, Daniel RM (1991) Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Biochem J 277:887–890CrossRefPubMedPubMedCentralGoogle Scholar
  150. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258CrossRefGoogle Scholar
  151. Sadhu S, Ghosh PK, Aditya G, Maiti TK (2014) Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. J King Saud Univ - Sci 26:323–332CrossRefGoogle Scholar
  152. Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660CrossRefPubMedGoogle Scholar
  153. Salah A, Ibrahim S, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478Google Scholar
  154. Sangkharak K, Vangsirikul P, Janthachat S (2011) Isolation of novel cellulase from agricultural soil and application for ethanol production. Int J Adv Biotechnol Res 2:230–239Google Scholar
  155. Sangkharak K, Vangsirikul P, Janthachat S (2012) Strain improvement and optimization for enhanced production of cellulase in Cellulomonas sp. TSU-03. Afr J Microbiol Res 6:1079–1084Google Scholar
  156. Sang-Mok L, Koo YM (2001) Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J Microbiol Biotechnol 11(2):229–233Google Scholar
  157. Santangelo TJ, Cubonová L, Reeve JN (2011) Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol Microbiol 81(4):897–911CrossRefPubMedPubMedCentralGoogle Scholar
  158. Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90Google Scholar
  159. Schut GJ, Boyd ES, Peters JW, Adams MWW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37:182–203CrossRefPubMedGoogle Scholar
  160. Schwarz WH, Grabnitz F, Staudenbauer WL (1986) Properties of a clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 51(6):1293–1299PubMedPubMedCentralGoogle Scholar
  161. Selmer Olsen I, Henderson AR, Robertson S, Mcginn R (1993) Cell wall degrading enzymes for silage. 1. The fermentation of enzyme-treated ryegrass in laboratory silos. Grass Forage Sci 48:45–54CrossRefGoogle Scholar
  162. Selvarajan E, Veena R, Manoj Kumar N (2018) Polyphenol oxidase, Beyond enzyme browning. In: Singh J., Sharma D., Kumar G., Sharma N. (eds) Microbial bioprospecting for sustainable development. Springer Nature Publisher Singapore 203–222Google Scholar
  163. Seo JK, Park TS, Kwon IH, Piao MY, Lee CH, Ha JK (2013) Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australasian J Anim Sci 26:50–58CrossRefGoogle Scholar
  164. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105:13769–13774CrossRefPubMedPubMedCentralGoogle Scholar
  165. Singh S, Moholkar VS (2013) Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35. Biotech 3:411–424Google Scholar
  166. Singh G, Singh AK (2014) Alternative substrates for the amylase and cellulase production with rhizobial isolates. Int J Avd Res Sci Technol 3(2):79–85Google Scholar
  167. Song YH, Lee KT, Baek JY, Kim MJ, Kwon MR, Kim YJ, Park MR, Ko H, Lee JS, Kim KS (2017) Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library. Folia Microbiol (Praha) 62:175–181CrossRefGoogle Scholar
  168. Stutzenberger FJ (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24:83–90PubMedPubMedCentralGoogle Scholar
  169. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844Google Scholar
  170. Supriyati, Haryati T, Susanti T, Susana IWR (2015) Nutritional value of rice bran fermented by Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. Asian-Australas J Anim Sci 28:231–238CrossRefPubMedPubMedCentralGoogle Scholar
  171. Taya M, Hinoki H, Yagi T, Kobayashi T (1988) Isolation and characterization of an extremely thermophilic, cellulolytic, anaerobic bacterium. Appl Microbiol Biotechnol 29:474–479CrossRefGoogle Scholar
  172. Telke AA, Zhuang N, Ghatge SS, Lee SH, Ali Shah A, Khan H, Um Y, Shin HD, Chung YR, Lee KH, Kim SW (2013) Engineering of family-5 glycoside hydrolase (Cel5A) from an uncultured bacterium for efficient hydrolysis of cellulosic substrates. PLoS One 8:e65727CrossRefPubMedPubMedCentralGoogle Scholar
  173. Teo VSJ, Saul DJ, Bergguist P (1995) celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296CrossRefGoogle Scholar
  174. van Beek S, Priest FG (2002) Evolution of the lactic acid bacteria community during malt whisky fermentation: a polyphasic study. Appl Environ Microbiol 68:297–305CrossRefPubMedPubMedCentralGoogle Scholar
  175. Verenich S, Arumugam K, Shim E, Pourdeyhimi B (2008) Treatment of raw cotton fibers with cellulases for nonwoven fabrics. Text Res J 78:540–548CrossRefGoogle Scholar
  176. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–4CrossRefPubMedPubMedCentralGoogle Scholar
  177. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26-3626–36CrossRefGoogle Scholar
  178. Voutilainen SP, Boer H, Linder MB, Puranen T, Rouvinen J, Vehmaanperä J, Koivula A (2007) Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzym Microb Technol 41:234–243CrossRefGoogle Scholar
  179. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng B (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66(3–4):294–301CrossRefGoogle Scholar
  180. Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22CrossRefPubMedPubMedCentralGoogle Scholar
  181. Wanga Y, Wanga X, Tanga R et al (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66:294–301CrossRefGoogle Scholar
  182. Wei KSC, Teoh TC, Koshy P et al (2015) Cloning, expression and characterization of the endoglucanase gene from bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in escherichia coli. Electron J Biotechnol 18:103–109CrossRefGoogle Scholar
  183. Xia Y, Wang Y, Fang HH et al (2014) Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis. Sci Rep 4:6708CrossRefPubMedPubMedCentralGoogle Scholar
  184. Yang C, Xia Y, Qu H, Li AD, Liu R, Wang Y, Zhang T (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:138CrossRefPubMedPubMedCentralGoogle Scholar
  185. Yeh YF, Chang SC, Yu SM, Kuo HW et al (2013) A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene 519:360–366CrossRefPubMedGoogle Scholar
  186. Yeoman CJ, Han Y, Dodd D et al (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55CrossRefPubMedPubMedCentralGoogle Scholar
  187. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Factories 4:8CrossRefGoogle Scholar
  188. Zeldes BM, Keller MW, Loder AJ et al (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209CrossRefPubMedPubMedCentralGoogle Scholar
  189. Zhang P, Zhang P, Himmel M et al (2006) Outlook for cellulose improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar
  190. Zhang YH, Hong J, Ye X (2009) Cellulase assays. Methods Mol Biol 581:213–231CrossRefPubMedGoogle Scholar
  191. Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B (2017) High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol Lett 39:123–131CrossRefPubMedGoogle Scholar
  192. Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile “Anaerocellum thermophilum” with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  • Kalpana Sahoo
    • 1
    Email author
  • Rajesh Kumar Sahoo
    • 1
  • Mahendra Gaur
    • 1
  • Enketeswara Subudhi
    • 1
  1. 1.Biomics and Biodiversity Lab., Centre of BiotechnologySiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations