Advertisement

Characterization of Salmonella Typhimurium and its monophasic variant 1,4, [5],12:i:- isolated from different sources

  • Yolande Therese Rose Proroga
  • Andrea Mancusi
  • Maria Francesca Peruzy
  • Maria Rosaria Carullo
  • Angela Michela Immacolata Montone
  • Andrea Fulgione
  • Federico CapuanoEmail author
Original Article
  • 27 Downloads

Abstract

In order to characterize the most commonly detected Salmonella serotypes, we tested 124 isolates of S. Typhimurium and 89 isolates of the monophasic variant of S. Typhimurium (S. 1,4, [5],12:i:-) for their antimicrobial susceptibility by means of the Kirby–Bauer disk-diffusion method, and for the detection of 19 genes (four Phage Markers (g13, Sieb, eat, g8), ten prophage-related virulence genes (gipA, gtgB, nanH, gogB, grvA, sopE, sspH1, sspH2, sodC1, gtgE), and five plasmid-borne virulence genes (spvC, pefA, mig5, rcK, srgA)) by means of PCR-based assays. A total of 213 strains were analyzed from, humans (n = 122), animals (n = 25), food (n = 46), and irrigation water (n = 20). S. Typhimurium isolates showed higher variability, in both their resistance profiles and molecular typing, than S. 1,4, [5],12:i:-. Strains from irrigation water displayed significantly higher susceptibility to antibiotics than those from the other sources. Resistance to ampicillin, streptomycin, sulfonamide, and tetracycline was the most commonly detected resistance profile (R-type), being in serovar S. 1,4, [5],12:i:-, frequently associated to resistance to other antimicrobials. Significant differences in genetic profiles in the two abovementioned Salmonella serotypes were found. None of the plasmid-borne virulence genes investigated were detected in S. 1,4, [5],12:i:- isolates, while those genes, characterized 37.9% of the S. Typhimurium strains. Differences in the prevalence of some molecular targets between the two Salmonella serotypes deserve further study. Importantly, the grvA gene was found exclusively in S. Typhimurium strains, whereas sopE, sodC, gtgB, and gipA were mainly detected, with a statistically significant difference, in S. 1,4, [5],12:i:- isolates.

Keywords

Multidrug resistance Prophage-related genes Plasmid-borne virulence genes Salmonella 1,4, [5],12:i:- Salmonella Typhimurium 

Notes

Supplementary material

12223_2019_683_MOESM1_ESM.doc (218 kb)
ESM 1 (DOC 218 kb)

References

  1. Barco L, Lettini AA, Longo A, Saccardin C, Dalla Pozza MC, Ricci A (2011) A rapid and sensitive method to identify and differentiate Salmonella enterica serotype Typhimurium and Salmonella enterica serotype 4,[5],12:i:- by combining traditional serotyping and multiplex polymerase chain reaction. Foodborne Pathog Dis 8:741–743CrossRefGoogle Scholar
  2. Borriello G, Lucibelli MG, Pesciaroli M, Carullo MR, Graziani C, Ammendola S, Battistoni A, Ercolini D, Pasquali P, Galiero G (2012) Diversity of Salmonella spp. serovars isolated from the intestines of water buffalo calves with gastroenteritis. BMC Vet Res 8:201CrossRefGoogle Scholar
  3. Brendan R, Jackson P, Griffin M, Cole D, Kelly A, Walsh, Chai SJ (2013) Outbreak associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg Infect Dis 19:1239–1244CrossRefGoogle Scholar
  4. Brussow H, Canchaya C, Wolf-Dietrich H (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602CrossRefGoogle Scholar
  5. Capuano F, Mancusi A, Capparelli R, Esposito S, Proroga YTR (2013) Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog Dis 10:963–968CrossRefGoogle Scholar
  6. Chiu CH, Ou JT (1996) Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol 34:2619–2622Google Scholar
  7. CLSI (2018) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. In: CLSI supplement VET08, 4th edn. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  8. De la Torre E, Zapata D, Tello M, Mejía W, Frías N, García Pena FJ, Mateu EM, Torre E (2003) Several Salmonella enterica subsp. enterica serotype 1,4,[5],12:i:- phage types isolated from swine samples originate from serotype Typhimurium DT U302. J Clin Microbiol 41:2395–2400CrossRefGoogle Scholar
  9. Dionisi AM, Graziani C, Lucarelli C, Filetici E, Villa L, Owczarek S, Caprioli A, Luzzi I (2009) Molecular characterization of multidrug resistant strains of Salmonella enterica serotype Typhimurium and monophasic variant (S. 4,[5],12:i:-) isolated from human infections in Italy. Foodborne Pathog Dis 6:711–717CrossRefGoogle Scholar
  10. Drahovskà H, Mikasovà E, Szemes T, Ficek A, Sasik M, Majan V, Turna J (2007) Variability in occurrence of multiple prophage genes in Salmonella Typhimurium strains isolated in Slovak Republic. FEMS Microbiol Lett 270:237–244CrossRefGoogle Scholar
  11. EFSA (2010) European food safety authority Panel on Biological Hazards (BIOHAZ). Scientific opinion on monitoring and assessment of the public health risk of "Salmonella Typhimurium-like" strains. EFSA J 8:1826CrossRefGoogle Scholar
  12. EFSA ECDC (2014) European food safety authority, european centre for disease prevention and control. The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J 12(2):3547CrossRefGoogle Scholar
  13. Galan JE, Zhou D (2000) Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci U S A 97:8754–8761CrossRefGoogle Scholar
  14. Golberg D, Kroupitski Y, Belausov E, Pinto R, Sela S (2011) Salmonella typhimurium internalization is variable in leafy vegetables and fresh herbs. Int J Food Microbiol 145:250–257CrossRefGoogle Scholar
  15. Guibourdenche M, Roggentin P, Mikoleit M, Fields P, Bockemühl J, Grimont PA, Weill FX (2010) Supplement 2003-2007 (no. 47) to the white-Kauffmann-Le minor scheme. Res Microbiol 161:26–29CrossRefGoogle Scholar
  16. Guiney DG, Fang FC, Krause M, Libby S (1994) Plasmid-mediated virulence genes in non-typhoid Salmonella serovars. FEMS Microbiol Lett 124:1–9CrossRefGoogle Scholar
  17. Hanning IB, Nutt JD, Ricke SC (2009) Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathog Dis 6:635–648CrossRefGoogle Scholar
  18. Hauser E, Tietze E, Helmuth R, Junker E, Blank K, Prager R, Rabsch W, Appel B, Fruth A, Malorny B (2010) Pork contaminated with Salmonella enterica serovar 1,4,[5],12:i:-, an emerging health risk for humans. Appl Environ Microbiol 76:4601–4610CrossRefGoogle Scholar
  19. Helms M, Ethelberg S, Mølbak K (2005) International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg Infect Dis 11:859–867CrossRefGoogle Scholar
  20. Ho TD, Slauch JM (2001) Characterization of grvA, an antivirulence gene on the gifsy-2 phage in Salmonella enterica serovar Typhimurium. J Bacteriol 83:611–620CrossRefGoogle Scholar
  21. Ho TD, Figueroa Bossi N, Wang M, Uzzau S, Bossi L, Slauch JM (2002) Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol 184:5234–5239CrossRefGoogle Scholar
  22. Holley RA, Arrus KM, Ominski KH, Tenuta M, Blank G (2006) Salmonella survival in manure-treated soils during simulated seasonal temperature exposure. J Environ Qual 31(35):1170–1180CrossRefGoogle Scholar
  23. Islam M, Morgan J, Doyle MP, Phatak SC, Millner P, Jiang XP (2004) Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl Environ Microbiol 70:2497–2502CrossRefGoogle Scholar
  24. Jiménez L, Muñiz I, Toranzos GA, Hazen TC (1989) Survival and activity of Salmonella Typhimurium and Escherichia coli in tropical freshwater. J Appl Bacteriol 67:61–69CrossRefGoogle Scholar
  25. Lan R, Reeves PR, Octavia S (2009) Population structure, origins and evolution of major Salmonella enterica clones. Infect Genet Evol 9:996–1005CrossRefGoogle Scholar
  26. Lucarelli C, Dionisi AM, Torpdah M, Villa L, Graziani C, Hopkins K, Threlfall J, Caprioli A, Luzzi I (2010) Evidence for a second genomic island conferring multidrug resistance in a clonal group of strains of Salmonella enterica serovar Typhimurium and its monophasic variant circulating in Italy, Denmark, and the United Kingdom. J Clin Microbiol 48:2103–2109CrossRefGoogle Scholar
  27. Mikasovà E, Drahovska H, Szemes T, Kuchta T, Karpiskova R, Sasik M, Turna J (2005) Characterization of Salmonella enterica serovar Typhimurium strains of veterinary origin by molecular typing methods. Vet Microbiol 109:113–120CrossRefGoogle Scholar
  28. Mirold S, Rabsch W, Rohde M, Stender S, Tschäpe H, Rüssmann H, Igwe E, Hardt WD (1999) Isolation of a temperate bacteriophage encoding the type III effector protein sopE from an epidemic Salmonella Typhimurium strain. Proc Natl Acad Sci U S A 96:9845–9850CrossRefGoogle Scholar
  29. Moore BC, Martinez E, Gay JM, Rice DH (2003) Survival of Salmonella enterica in freshwater and sediments and transmission by the aquatic midge Chironomus tentans (Chironomidae: Diptera). Appl Environ Microbiol 69(8):4556–4560CrossRefGoogle Scholar
  30. Mossong J, Marques P, Ragimbeau C, Huberty Krau P, Losch S, Meyer G, Moris G, Strottner C, Rabsch W, Schneider F (2007) Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006. Euro Surveill 12:156–158CrossRefGoogle Scholar
  31. Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR, Connor T, Hopkins KL, Underwood A, Lettini AA, Page A, Bagnall M, Wain J, Parkhill J, Dougan G, Davies R, Kingsley RA (2016) Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005–2010. Emerg Infect Dis 22:617–624CrossRefGoogle Scholar
  32. Proroga YTR, Capuano F, Carullo MR, La Tela I, Capparelli R, Barco L, Pasquale V (2016) Occurrence and antimicrobial resistance of Salmonella strains from food of animal origin in southern Italy. Folia Microbiol 61:21–27CrossRefGoogle Scholar
  33. Proroga YTR, Capuano F, Capparelli R, Bilei S, Bernardo M, Cocco MP, Campagnuolo R, Pasquale V (2018) Characterization of non-typhoidal Salmonella enterica strains of human origin in central and southern Italy. Ital J Food Saf 7:6888Google Scholar
  34. Rahman H, Hardt WD, Murugkar HV, Bhattacharyya DK (2005) Occurrence of sopE gene and its phenotypic expression among different serovars of Salmonella enterica isolated from man and animals. Indian J Exp Biol 43:631–634Google Scholar
  35. RAPPORTI ISTISAN15/33 Graziani C, Arigoni F, Turno P, Macchioni D, Pileggi C, Pavia M, Veltri P, Casalinuovo F, Capuano F, Sarnelli P, Luzzi I, Busani L (2015) Valutazione del rischio sanitario di infezioni da agenti zoonosici attraverso prodotti vegetali ottenuti in aree ad elevata pressione zootecnica. v, 98 p. available from 29–10-2015, updated 06–11-2015. http://www.iss.it/binary/publ/cont/15_33_web.pdf
  36. Raybaudi Massilia RM, MosquedaMelgar J, Martín Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci Food Saf 8:157–180CrossRefGoogle Scholar
  37. Sungwoo B, Wuertz S (2012) Survival of host-associated bacteroidales cells and their relationship with Enterococcus spp., Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and adenovirus in freshwater microcosms as measured by propidium monoazide-quantitative PCR. Appl Environ Microbiol 78:922–932CrossRefGoogle Scholar
  38. Szemes T, Vlková B, Minárik G, Drahovská H, Turna J, Celec P (2012) Does phage P22 contribute to resistance of Salmonella to oxidative stress? Med Hypotheses 79:484–486CrossRefGoogle Scholar
  39. Tennant SM, Diallo S, Levy H, Livio S, Sow SO, Tapia M, Fields PI, Mikoleit M, Tamboura B, Kotloff KL, Nataro JP, Galen JE, Levine MM (2010) Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali. PLoS Negl Trop Dis 4:e621CrossRefGoogle Scholar
  40. Van Der Linden I, Cottyn B, Uyttendaele M, Berkvens N, Vlaemynck G, Heyndrickx M, Maes M (2014) Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers. Int J Environ Res Public Health 11:10105–10124CrossRefGoogle Scholar
  41. Yang X, Wu Q, Zhang J, Huang J, Guo W, Cai S (2015) Prevalence and characterization of monophasic Salmonella serovar 1,4,[5],12:i:- of food origin in China. PLoS One 10:e0137967CrossRefGoogle Scholar
  42. You YW, Rankin SC, Aceto HW, Benson CE, Toth JD, Dou ZX (2006) Survival of Salmonella enterica serovar Newport in manure and manure-amended soils. Appl Environ Microbiol 79:5777–5783CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  • Yolande Therese Rose Proroga
    • 1
  • Andrea Mancusi
    • 1
  • Maria Francesca Peruzy
    • 2
  • Maria Rosaria Carullo
    • 3
  • Angela Michela Immacolata Montone
    • 1
  • Andrea Fulgione
    • 4
  • Federico Capuano
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Food and Feed Control; Laboratory of Molecular BiologyIstituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly
  2. 2.Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
  3. 3.Department of Food and Feed Control, Centro Tipizzazione SalmonelleIstituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly
  4. 4.Department of AgricultureUniversity of Naples “Federico II”PorticiItaly

Personalised recommendations