Advertisement

Stb5p is involved in Kluyveromyces lactis response to 4-nitroquinoline-N-oxide stress

  • Alexandra BencovaEmail author
  • Alexandra Konecna
  • Nora Toth Hervay
  • Yvetta Gbelska
Original Article
  • 25 Downloads

Abstract

In yeast, the STB5 gene encodes a transcriptional factor belonging to binuclear cluster class (Zn2Cys6) of transcriptional regulators specific to ascomycetes. In this study, we prepared the Kluyveromyces lactis stb5Δ strain and assessed its responses to different stresses. We showed that KlSTB5 gene is able to complement the deficiencies of Saccharomyces cerevisiae stb5Δ mutant. The results of phenotypic analysis suggested that KlSTB5 gene deletion did not sensitize K. lactis cells to oxidative stress inducing compounds but led to Klstb5Δ resistance to 4-nitroquinoline-N-oxide and hygromycin B. Expression analysis indicated that the loss of KlSTB5 gene function induced the transcription of drug efflux pump encoding genes that might contribute to increased 4-nitroquinoline-N-oxide and hygromycin B tolerance. Our results show that KlStb5p functions as negative regulator of some ABC transporter genes in K. lactis.

Keywords

Transcriptional regulator Oxidative stress Drug resistance Kluyveromyces lactis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12223_2019_682_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)

References

  1. Akache B, Turcotte B (2002) New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem 277:21254–21260CrossRefGoogle Scholar
  2. Akache B, Wu K, Turcotte B (2001) Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 29:2181–2190CrossRefGoogle Scholar
  3. Akache B, MacPherson S, Sylvain MA, Turcotte B (2004) Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. J Biol Chem 279:27855–27860CrossRefGoogle Scholar
  4. Ausubel FM, Brent R, Kingston RE et al (1989) Current protocols in molecular biology. Willey, New YorkGoogle Scholar
  5. Balkova K, Sarinova M, Hodurova Z, Goffrini P, Gbelska Y (2009) Functional analysis of the Kluyveromyces lactis PDR1 gene. FEMS Yeast Res 9:321–327CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  7. Breunig KD, Bolotin-Fukuhara M, Bianchi MM et al (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzym Microb Technol 26:771–780CrossRefGoogle Scholar
  8. Bussereau F, Casaregola S, Lafay JF, Bolotin-Fukuhara M (2006) The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res 6:325–335CrossRefGoogle Scholar
  9. Cadiere A, Galeote V, Dequin S (2010) The Saccharomyce cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. FEMS Yeast Res 10:819–827CrossRefGoogle Scholar
  10. Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan C, Hutchins AP, Weinmeier T, Rattei T, Chu JSC, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ (2013) Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 14:R11CrossRefGoogle Scholar
  11. Gbelska Y, Krijger JJ, Breunig KD (2006) Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res 6:345–355CrossRefGoogle Scholar
  12. Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I (2018) Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 8:7860CrossRefGoogle Scholar
  13. González-Siso MI, Garcia-LeiroA TN, Cerdán ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Factories 8:46CrossRefGoogle Scholar
  14. Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 4:2519–2524CrossRefGoogle Scholar
  15. Kasten MM, Stillman DJ (1997) Identification of the Saccharomyces cerevisiae genes STB1-STB5 encoding Sin3p binding proteins. Mol Gen Genet 256:376–386CrossRefGoogle Scholar
  16. Klimova N, Yeung R, Kachurina N, Turcotte B (2014) Phenotypic analysis of a family of Trancriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata. G3 4:931–940CrossRefGoogle Scholar
  17. Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792CrossRefGoogle Scholar
  18. Larochelle M, Drouin S, Robert F, Turcotte B (2006) Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 26:6690–6701CrossRefGoogle Scholar
  19. MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of trancription regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604CrossRefGoogle Scholar
  20. Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J (2010) Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. J Basic Microbiol 50:494–498CrossRefGoogle Scholar
  21. Mehlgarten C, Krijger JJ, Lemnian I, Gohr A, Kasper L, Diesing AK, Grosse I, Breunig KD (2015) Divergent evolution of the transcriptional network controlled by Snf1-interacting protein Sip4 in budding yeasts. PLoS One 10:e0139464CrossRefGoogle Scholar
  22. Noble JA, Tsai HF, Suffis SD, Su Q, Myers TG, Bennett JE (2013) STB5 is a negative regulator of azole resistance in Candida glabrata. Antimicrob Agents Chemother 57:959–967CrossRefGoogle Scholar
  23. Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–177CrossRefGoogle Scholar
  24. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211CrossRefGoogle Scholar
  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  26. Sánchez M, Iglesias FJ, Santamarıa C et al (1993) Transformation of Kluyveromyces lactis by electroporation. Appl Environ Microbiol 59:2087–2092Google Scholar
  27. Thompson JR, Register E, Curotto J, Kurtz M, Kelly R (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571CrossRefGoogle Scholar
  28. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  1. 1.Faculty of Natural Sciences, Department of Microbiology and VirologyComenius University in BratislavaBratislava 4Slovak Republic

Personalised recommendations