Advertisement

Folia Microbiologica

, Volume 64, Issue 2, pp 161–170 | Cite as

A highly efficient electrophoretic method for discrimination between two Neoscytalidium species using a specific fungal internal transcribed spacer (ITS) fragment

  • Mohammed Baqur S. Al-ShuhaibEmail author
  • Hawraa N. Al-Kaaby
  • Sabah L. Alwan
Original Article
  • 45 Downloads

Abstract

Neoscytalidium (or N.) dimidiatum and N. novaehollandiae are two aggressive plant pathogenic species that affect several agricultural crops. Early detection and identification of these fungi are of critical importance to bring about the effective minimization to the threat they pose to the infected plants. Herein, two species of Neoscytalidium were rapidly discriminated by utilizing the rRNA internal transcribed (ITS4-5.8S-ITS5) PCR primers. A total of 100 isolates of Neoscytalidium species, which were isolated from Iraqi canker-infected fig trees, were included in this study. Two discrete electrophoretic PCR bands were observed in Neoscytalidium isolates—A-variants were about 546 bp, while B-variants were about 993 bp in length. The comprehensive phylogenetic analysis of both DNA variants revealed that A-variants resided between N. novaehollandiae and N. hyalinum, while B-variants were closely related to N. dimidiatum. Furthermore, the highly specific re-constructed tree of both electrophoretic variants demonstrated that B-variants share a high similarity with N. novaehollandiae. Additionally, the secondary structures for both variants were predicted computationally to reveal the structural patterns that each variant follows. In conclusion, a small rRNA locus comprising 22 nucleotides that differs in the two variants is potentially responsible for this species-specific classification. The main divergence in the amplified loci led to the classification of these fungal variants into two main species, namely N. dimidiatum and N. novaehollandiae, demonstrating that the amplification by ITS4–ITS5 rRNA fragment is a beneficial strategy that can be employed for the assessment of Neoscytalidium diversity in the natural ecosystems.

Supplementary material

12223_2018_641_MOESM1_ESM.pdf (149 kb)
Supplementary Fig. 1 The main morphological and microbiological characterization of Neoscytalidium species that isolated from cankered stems of fig trees in the middle Euphrates region of Iraq. A, Stem canker symptoms caused by Neoscytalidium species observed in the fields. B, Morphological characterization of Neoscytalidium species in the Petri dish. C, Conidiogenous cells in the branched and brown hyphae. D, Mature conidia. (PDF 148 kb)
12223_2018_641_MOESM2_ESM.docx (17 kb)
Supplementary Table 1 (DOCX 17 kb)

References

  1. Al-Shuhaib MBS, Albakri AH, Alwan SL, Almandil NB, AbdulAzeez S, Borgio JF (2018) Optimal PCR primers for rapid and accurate detection of Aspergillus flavus isolates. Microb Pathog 116:351–355.  https://doi.org/10.1016/j.micpath.2018.01.049 CrossRefGoogle Scholar
  2. Bakhshizadeh M, Hashemian HR, Najafzadeh MJ, Dolatabadi S, Zarrinfar H (2015) First report of rhinosinusitis caused by Neoscytalidium dimidiatum in Iran. J Med Microbiol 63:1017–1019.  https://doi.org/10.1099/jmm.0.065292-0 CrossRefGoogle Scholar
  3. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474.  https://doi.org/10.1186/1471-2105-9-474 CrossRefGoogle Scholar
  4. Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucl Acids Res 20:20–2380.  https://doi.org/10.1093/nar/20.9.2380 CrossRefGoogle Scholar
  5. Chuang MF, Yang HR, Shu SL, Lai SY (2012) First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant dis 96:906.  https://doi.org/10.1094/PDIS-08-11-0689-PDN CrossRefGoogle Scholar
  6. Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253CrossRefGoogle Scholar
  7. Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 12(10):8.  https://doi.org/10.1186/1471-2148-10-8 CrossRefGoogle Scholar
  8. Ezra D, Liarzi O, Gat T, Hershcovich M, Dudai M (2013) First report of internal black rot caused by Neoscytalidium dimidiatum on Hylocereus undatus (Pitahaya) fruit in Israel. Plant Dis 97:1513.  https://doi.org/10.1094/pdis-05-13-0535-pdn CrossRefGoogle Scholar
  9. Farr DF, Elliot M, Rossman AY, Edmonds RL (2005) Fusicoccum arbuti sp. nov. causing cankers on Pacific madrone in western North America with notes on Fusicoccum dimidiatum, the correct name for Scytalidium dimidiatum and Nattrassia mangiferae. Mycologia 97:730–741.  https://doi.org/10.1080/15572536.2006.11832803 CrossRefGoogle Scholar
  10. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucl Acids Res 36(Web Server issue):W70–W74.  https://doi.org/10.1093/nar/gkn188 CrossRefGoogle Scholar
  11. Huang SK, Tangthirasunun N, Phillips AJL, Dai DQ, Wanashinghe DN et al (2016) Morphology and phylogeny of Neoscytalidium orchidacearum sp. nov. (Botryosphaeriaceae). Mycobiology 44:79–84.  https://doi.org/10.5941/MYCO.2016.44.2.79 CrossRefGoogle Scholar
  12. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, Cardinali G, Arthur I, Normand A, Giraldo A et al (2015) International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database-the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 53:313–337.  https://doi.org/10.1093/mmy/myv008 CrossRefGoogle Scholar
  13. Keller A, Förster F, Müller T, Dandekar T, Schultz J, Wolf M (2010) Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol Direct 5:4.  https://doi.org/10.1186/1745-6150-5-4 CrossRefGoogle Scholar
  14. Kerpedjiev P, Hammer S, Hofacker IL (2015) Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31:3377–3379.  https://doi.org/10.1093/bioinformatics/btv372 CrossRefGoogle Scholar
  15. Koetschan C, Kittelmann S, Lu J, al-Halbouni D, Jarvis GN, Müller T, Wolf M, Janssen PH (2014) Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS One 9:e91928.  https://doi.org/10.1371/journal.pone.0091928 CrossRefGoogle Scholar
  16. Machouart M, Lacroix C, Bui H, Feuilhade de Chauvin M, Derouin F, Lorenzo F (2004) Polymorphisms and intronic structures in the 18S subunit ribosomal RNA gene of the fungi Scytalidium dimidiatum and Scytalidium hyalinum. Evidence of an IC1 intron with an His-Cys endonuclease gene. FEMS Microbiol Lett 238:455–467.  https://doi.org/10.1016/j.femsle.2004.08.011 Google Scholar
  17. Madrid H, Ruiz-Cendoya M, Cano J, Stchigel A, Orofino R, Guarro J (2009) Genotyping and in vitro antifungal susceptibility of Neoscytalidium dimidiatum isolates from different origins. Int J Androl 34:351–354.  https://doi.org/10.1016/j.ijantimicag.2009.05.006 Google Scholar
  18. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 11(101):7287–7292.  https://doi.org/10.1073/pnas.0401799101 CrossRefGoogle Scholar
  19. Mohd MH, Salleh B, Zakaria L (2013) Identification and molecular characterizations of Neoscytalidium dimidiatum causing stem canker of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. J Phytopathol 161:841–849.  https://doi.org/10.1111/jph.12146 CrossRefGoogle Scholar
  20. Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296:97–101.  https://doi.org/10.1111/j.1574-6968.2009.01618.x CrossRefGoogle Scholar
  21. Pavlic D, Wingfield MJ, Barber P, Slippers B, Hardy GE, Burgess TI (2008) Seven new species of the Botryosphaeriaceae from baobab and other native trees in Western Australia. Mycologia 100:851–866.  https://doi.org/10.3852/08-020 CrossRefGoogle Scholar
  22. Phillips AJ, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167.  https://doi.org/10.3114/sim0021 CrossRefGoogle Scholar
  23. Polizzi G, Aiello D, Vitale A, Giuffrida F, Groenewald Z, Crous PW (2009) First report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Dis 93:1215.  https://doi.org/10.1094/PDIS-93-11-1215A CrossRefGoogle Scholar
  24. Ray JD, Burgess T, Lanoiselet VM (2010) First record of Neoscytalidium dimidiatum and N. novaehollandiae on Mangifera indica and N. dimidiatum on Ficus carica in Australia. Australas Plant Dis Notes 5:48–50.  https://doi.org/10.1071/DN10018 CrossRefGoogle Scholar
  25. Roeijmas HJ, De Hong GS, Tan CS, Figgie MJ (1997) Molecular taxonomy and GC/MS of metabolites of Scytalidium hyalinum and Nattrassia mangiferae (Hendersonula toruloidea). J Med Vet Mycol 35:181–188.  https://doi.org/10.1080/02681219780001121 CrossRefGoogle Scholar
  26. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera C, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SSN, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:1–6.  https://doi.org/10.1073/pnas.1117018109 CrossRefGoogle Scholar
  27. Spadaro D, Patharajan S, Lore A, Garibaldi A, Gullino M (2012) Ochratoxigenic black species of Aspergilli in grape fruits of northern Italy identified by an improved PCR-RFLP procedure. Toxins 4:42–54.  https://doi.org/10.3390/toxins4020042 CrossRefGoogle Scholar
  28. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian P-Y (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One 9:e90053.  https://doi.org/10.1371/journal.pone.0090053 CrossRefGoogle Scholar
  29. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications. Edited by MA Innis, DH Gelfand, JJ Sninsky and TJ White. Academic Press, San Diego, California; 1990, pp 315–322. doi:  https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  30. Yi RH, Lin QL, Mo JJ, Wu FF, Chen J (2015) Fruit internal brown rot caused by Neoscytalidium dimidiatum on pitahaya in Guangdong province, China. Australas Plant Dis Notes 10:13.  https://doi.org/10.1007/s13314-015-0166-1 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  1. 1.Department of Animal Production, College of AgricultureAl-Qasim Green UniversityAl-QasimIraq
  2. 2.Department of Plant Protection, College of AgricultureUniversity of KufaKufaIraq

Personalised recommendations