Advertisement

Folia Microbiologica

, Volume 64, Issue 1, pp 33–39 | Cite as

Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum

  • Jessica Cruz-Ramón
  • Francisco J. Fernández
  • Armando Mejía
  • Francisco FierroEmail author
Original Article
  • 100 Downloads

Abstract

Three different transformation strategies were tested and compared in an attempt to facilitate and improve the genetic transformation of Acremonium chrysogenum, the exclusive producer of the pharmaceutically relevant β-lactam antibiotic cephalosporin C. We investigated the use of high-voltage electric pulse to transform germinated conidia and young mycelium and compared these procedures with traditional PEG-mediated protoplast transformation, using phleomycin resistance as selection marker in all cases. The effect of the field strength and capacitance on transformation frequency and cell viability was evaluated. The electroporation of germinated conidia and young mycelium was found to be appropriate for transforming A. chrysogenum with higher transformation efficiencies than those obtained with the conventional protoplast-based transformation procedures. The developed electroporation strategy is fast, simple to perform, and highly reproducible and avoids the use of chemicals toxic to cells. Electroporation of young mycelium represents an alternative method for transformation of fungal strains with reduced or no sporulation, as often occurs in laboratory-developed strains in the search for high-yielding mutants for industrial bioprocesses.

Notes

Funding information

This work was funded by the CONACyT (México) through the Research Project CB-2008-01 105527. Jessica Cruz-Ramón received a Scholarship Grant from the CONACyT (No. 203440).

Supplementary material

12223_2018_625_MOESM1_ESM.pdf (265 kb)
Table A1 (PDF 265 kb)
12223_2018_625_MOESM2_ESM.pdf (489 kb)
Table A2 (PDF 489 kb)

References

  1. Business Insights LTD (2016) The antibacterials market outlook to 2016. Competitive landscape, pipeline analysis, and growth opportunities. Retrieved from http://docplayer.net/28429245-The-antibacterials-market-outlook-to-competitive-landscape-pipeline-analysis-and-growth-opportunities.html
  2. Chakraborty BN (2014) Electroporation mediated DNA transformation of filamentous fungi. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 1. Springer International Publishing, Switzerland, pp 67–79Google Scholar
  3. Chakraborty BN, Kapoor M (1990) Transformation of filamentous fungi by electroporation. Nucleic Acids Res 18:6737CrossRefGoogle Scholar
  4. Chakraborty BN, Patterson NA, Kapoor M (1991) An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37:858–863CrossRefGoogle Scholar
  5. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842CrossRefGoogle Scholar
  6. Delorme E (1989) Transformation of Saccharomyces cerevisiae by electroporation. Appl Environ Microbiol 55:2242–2246Google Scholar
  7. Dombrowski JE, Baldwin JC, Alderman SC, Martin RC (2011) Transformation of Epichloë typhina by electroporation of conidia. BMC Res Notes 4:46CrossRefGoogle Scholar
  8. Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392CrossRefGoogle Scholar
  9. Fitzgerald NB, English RS, Lampel JS, Vanden Boom TJ (1998) Sonication-dependent electroporation of the erythromycin-producing bacterium Saccharopolyspora erythraea. Appl Environ Microbiol 64:1580–1583Google Scholar
  10. Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R (2015) State of the world’s antibiotics, 2015. Center for Disease Dynamics, Economics & Policy, Washington D.CGoogle Scholar
  11. Gutiérrez S, Díez B, Álvarez E, Barredo JL, Martín JF (1991) Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Mol Gen Genet 225:56–64CrossRefGoogle Scholar
  12. Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl Microbiol Biotechnol 21:336–339CrossRefGoogle Scholar
  13. Jiang Q, Ying SH, Feng MG (2007) Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzyme-mediated integration and electroporation. J Microbiol Methods 69:512–517CrossRefGoogle Scholar
  14. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1:395–403CrossRefGoogle Scholar
  15. Kresse H, Belsey MJ, Rovini H (2007) The antibacterial drugs market. Nat Rev Drug Discov 6:19–20CrossRefGoogle Scholar
  16. Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62CrossRefGoogle Scholar
  17. Kuo CY, Huang CT (2008) A reliable transformation method and heterologous expression of beta-glucuronidase in Lentinula edodes. J Microbiol Methods 72:111–115CrossRefGoogle Scholar
  18. Long LK, Yang J, An Y, Liu G (2012) Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet Biol 49:114–122CrossRefGoogle Scholar
  19. Marchand G, Fortier E, Neveu B, Bolduc S, Belzile F, Bélanger RR (2007) Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus. J Microbiol Methods 70:519–527CrossRefGoogle Scholar
  20. Miklenić M, Štafa A, Bajić A, Žunar B, Lisnić B, Svetec IK (2013) Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA. J Microbiol Biotechnol 23:674–680CrossRefGoogle Scholar
  21. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180CrossRefGoogle Scholar
  22. Naranjo L, Martín de Valmaseda E, Casqueiro J, Ullán RV, Lamas-Maceiras M, Bañuelos O, Martín JF (2004) Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from alpha-aminoadipic acid. Appl Environ Microbiol 70:1031–1039CrossRefGoogle Scholar
  23. Nash CH, Pieper RL (1974) Physiology of spore germination in Cephalosporium acremonium. Mycopathol Mycol Appl 54:369–375CrossRefGoogle Scholar
  24. Nüesch J, Treichler HJ, Liersch M (1973) The biosynthesis of cephalosporin C. In: Vanek Z, Hostalek Z, Cudlin J (eds) Genetics of Industrial Microorganisms. Elsevier Publishing Co., Amsterdam, pp 309–334Google Scholar
  25. Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31:287–311CrossRefGoogle Scholar
  26. Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y (1994) Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58:2224–2227CrossRefGoogle Scholar
  27. Peberdy J, Ferenczy L (1985) Fungal protoplasts: applications in biochemistry and genetics. CRC Press, New YorkGoogle Scholar
  28. Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by electroporation. Appl Environ Microbiol 61:352–356Google Scholar
  29. Pöggeler S, Hoff B, Kück U (2008) Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74:6006–6016CrossRefGoogle Scholar
  30. Richey MG, Marek ET, Schardl CL, Smith DA (1989) Transformation of filamentous fungi with plasmid DNA by electroporation. Phytopathology 79:844–847CrossRefGoogle Scholar
  31. Robinson M, Sharon A (1999) Transformation of the bioherbicide Colletotrichum gloeosporioides f. Sp. Aeschynomene by electroporation of germinated conidia. Curr Genet 36:98–104CrossRefGoogle Scholar
  32. Rodríguez-Sáiz M, Lembo M, Bertetti L, Muraca R, Velasco J, Malcangi A, de la Fuente JL, Barredo JL (2004) Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiol Lett 235:43–49CrossRefGoogle Scholar
  33. Sánchez O, Aguirre J (1996) Efficient transformation of Aspergillus nidulans by electroporation of germinated conidia. Fungal Genet Newslett 43:48–51Google Scholar
  34. Schmitt EK, Hoff B, Kück U (2004) Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol 88:1–43Google Scholar
  35. Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Efficient integrative transformation of Cephalosporium acremonium. Curr Genet 12:337–348CrossRefGoogle Scholar
  36. Smith AW, Ramsden M, Peberdy JF (1992) Analysis of promoter activity by transformation of Acremonium chrysogenum. Gene 114:211–216CrossRefGoogle Scholar
  37. Suga M, Hatakeyama T (2001) High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18:1015–1021CrossRefGoogle Scholar
  38. Tsai HF, Siegel MR, Schardl CL (1992) Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Curr Genet 22:399–406CrossRefGoogle Scholar
  39. Vela-Corcía D, Romero D, Torés JA, De Vicente A, Pérez-García A (2015) Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiol 15:20CrossRefGoogle Scholar
  40. Walz M, Kück U (1993) Targeted integration into the Acremonium chrysogenum genome: disruption of the pcbC gene. Curr Genet 24:421–427CrossRefGoogle Scholar
  41. Wang JH, Hung W, Tsai SH (2011) High efficiency transformation by electroporation of Yarrowia lipolytica. J Microbiol 49:469–472CrossRefGoogle Scholar
  42. Xu W, Zhu C, Zhu B (2005) An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J Microbiol Biotechnol 15:683–688Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-Unidad IztapalapaCiudad de MéxicoMexico

Personalised recommendations