Advertisement

Characterization and genomic analysis of highly efficient thermotolerant oil-degrading bacterium Gordonia sp. 1D

  • Yanina A. Delegan
  • Leonid N. Valentovich
  • Samira M. Shafieva
  • Khudaverdi G. Ganbarov
  • Andrey E. Filonov
  • Mikhail B. Vainstein
Original Article
  • 58 Downloads

Abstract

A thermotolerant bacterial strain 1D isolated from refinery oil-contaminated soil was identified as Gordonia sp. based on the analysis of 16S rRNA and gyrB gene sequences. The strain was found to utilize crude oil, diesel fuel, and a wide spectrum of alkanes at temperatures up to 50 °C. Strain 1D is the first representative of Gordonia amicalis capable of utilizing alkanes of chain length up to С36 at a temperature of 45–50 °C. The degree of crude oil degradation by Gordonia sp. 1D at 45 °C was 38% in liquid medium and 40% in soil (with regard to abiotic loss). There are no examples of so effective hydrocarbon-oxidizing thermotolerant Gordonia in the world literature. The 1D genome analysis revealed the presence of two alkane hydroxylase gene clusters, genes of dibenzothiophene cleavage, and the cleavage of salicylate and gentisate – naphthalene metabolism intermediates. The highly efficient thermotolerant strain Gordonia sp. 1D can be used in remediation of oil-contaminated soils in hot climates.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The work was financially supported by RFBR (project №18-34-00329_mol_а).

References

  1. Arenskötter M, Bröker D, Steinbuchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204.  https://doi.org/10.1128/AEM.70.6.3195-3204.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 8(9):75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120.  https://doi.org/10.1093/bioinformatics/btn578 CrossRefPubMedGoogle Scholar
  6. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469.  https://doi.org/10.1093/bioinformatics/btr703
  7. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23(6):673–679.  https://doi.org/10.1093/bioinformatics/btm009 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Delegan Y, Vetrova A, Akimov V, Titok M, Filonov A, Boronin M (2016) Thermotolerant oil-degrading bacteria isolated from soil and water of geographically distant regions. Appl Biochem Microbiol 52(4):389–396.  https://doi.org/10.1134/S0003683816040025 CrossRefGoogle Scholar
  9. Di Gennaro P, Rescalli E, Galli E, Sello G, Bestetti G (2001) Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Res Microbiol 152(7):641–651.  https://doi.org/10.1016/S0923-2508(01)01243-8 CrossRefPubMedGoogle Scholar
  10. Eden PA, Schmidt TM, Blakemore RP, Pace NR (1991) Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacterifol 41(2):324–325.  https://doi.org/10.1099/00207713-41-2-324 CrossRefGoogle Scholar
  11. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036.  https://doi.org/10.1099/00207713-50-6-2031 CrossRefPubMedGoogle Scholar
  12. Lin CL, Shen FT, Tan CC, Huang CC, Chen BY, Arun AB, Young CC (2012) Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol Res 167:395–404.  https://doi.org/10.1016/j.micres.2011.12.002 CrossRefPubMedGoogle Scholar
  13. Lin TC, Chang JS, Young CC (2008) Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnol Lett 30:1201–1206.  https://doi.org/10.1007/s10529-008-9667-8 CrossRefGoogle Scholar
  14. Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P (2011) Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77:1204–1213.  https://doi.org/10.1128/AEM.02180-10 CrossRefPubMedGoogle Scholar
  15. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory. 466 pagesGoogle Scholar
  16. Santos SCC, Alviano DS, Alviano CS, Pádula M, Leitão AC et al (2005) Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362.  https://doi.org/10.1007/s00253-005-0154-z
  17. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069.  https://doi.org/10.1093/bioinformatics/btu153 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Shen FT, Young LS, Hsieh MF, Lin SY, Young CC (2010) Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp. Syst Appl Microbiol 33:53–55.  https://doi.org/10.1016/j.syapm.2009.11.003 CrossRefPubMedGoogle Scholar
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109PubMedPubMedCentralGoogle Scholar
  21. Young CC, Lin TC, Yeh MS, Shen FT, Chang JS (2005) Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain. World J Microbiol Biotechnol 21:1409–1414.  https://doi.org/10.1007/s11274-005-5742-7 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  1. 1.FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia
  2. 2.Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
  3. 3.Baku State UniversityBakuAzerbaijan

Personalised recommendations