Advertisement

Folia Microbiologica

, Volume 64, Issue 1, pp 121–126 | Cite as

Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus

  • Milada Dvořáčková
  • Filip RůžičkaEmail author
  • Martin Benešík
  • Roman Pantůček
  • Monika Dvořáková-Heroldová
Short Communication

Abstract

Staphylococcus aureus may be a highly virulent human pathogen, especially when it is able to form a biofilm, and it is resistant to antibiotic. Infections caused by these bacteria significantly affect morbidity and mortality, primarily in hospitalized patients. Treatment becomes more expensive, more toxic, and prolonged. This is the reason why research on alternative therapies should be one of the main priorities of medicine and biotechnology. A promising alternative treatment approach is bacteriophage therapy. The effect of the anti-staphylococcal bacteriophage preparation Stafal® on biofilm reduction was assessed on nine S. aureus strains using both sonication with subsequent quantification of surviving cells on the catheter surface and evaluation of biofilm reduction in microtiter plates. It was demonstrated that the bacteriophages destroy planktonic cells very effectively. However, to destroy cells embedded in the biofilm effectively requires a concentration at least ten times higher than that provided by the commercial preparation. The catheter disc method (CDM) allowed easier comparison of the effect on planktonic cells and cells in a biofilm than the microtiter plate (MTP) method.

Notes

Funding information

This work was supported by the Ministry of Health of the Czech Republic, grant no. 16-29916A.

References

  1. Abedon ST (2012) Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities. Viruses 4(5):663–687.  https://doi.org/10.3390/v4050663 CrossRefGoogle Scholar
  2. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Tobias A, Jenkins A (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80(21):6694–6703.  https://doi.org/10.1128/AEM.01789-14 CrossRefGoogle Scholar
  3. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266.  https://doi.org/10.2174/138920108785161604 CrossRefGoogle Scholar
  4. Čapla J, Zajác P, Vietoris V, Bajzík P (2010) New methodologies for biofilms control in food industry. Potravinarstvo 4(3):10–13Google Scholar
  5. Cooper CJ, Khan Mirzaei M, Nilsson AS (2016) Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7:1209.  https://doi.org/10.3389/fmicb.2016.01209 Google Scholar
  6. Cui Z, Guo X, Dong K, Dong K, Zhang Y, Li Q, Zhu Y, Zeng L, Tang R, Li L (2017) Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Sci Rep 7:41259.  https://doi.org/10.1038/srep41259 CrossRefGoogle Scholar
  7. Curtin JJ, Donlan RM (2006) Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50(4):1268–1275.  https://doi.org/10.1128/AAC.50.4.1268-1275.2006 CrossRefGoogle Scholar
  8. Debarbieux L, Pirnay JP, Verbeken G, DeVos D, Merabishvili M, Huys I, Merabishvili M, Huys I, Patey O, Schoonjans D, Vaneechoutte M, Zizi M, Rohde C (2016) A bacteriophage journey at the European Medicines Agency. FEMS Microbiol Lett 363(2):fnv225.  https://doi.org/10.1093/femsle/fnv225 CrossRefGoogle Scholar
  9. Drilling A, Morales S, Jardeleza C, Vreugde S, Speck P, Wormald PJ (2014) Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Am J Rhinol Allergy 28:3–11.  https://doi.org/10.2500/ajra.2014.28.4001 CrossRefGoogle Scholar
  10. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015Google Scholar
  11. Eyer L, Pantůček R, Zdráhal Z, Konečná H, Kašpárek P, Růžičková V, Hernychová L, Preisler J, Doškař J (2007) Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics 7:64–72.  https://doi.org/10.1002/pmic.200600280 CrossRefGoogle Scholar
  12. Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewitcz S, Rogoz P, Jonczyk-Matysiak E, Dabrowska K, Majewska J, Borysowski J (2016) Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515.  https://doi.org/10.3389/fmicb.2016.01515 CrossRefGoogle Scholar
  13. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753.  https://doi.org/10.1128/AEM.67.6.2746-2753.2001 CrossRefGoogle Scholar
  14. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H, Turnwald D, Vogel U (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448.  https://doi.org/10.1128/JCM.41.12.5442-5448.2003 CrossRefGoogle Scholar
  15. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136.  https://doi.org/10.1093/jac/40.1.135 CrossRefGoogle Scholar
  16. Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144(Pt 11):3039–3047.  https://doi.org/10.1099/00221287-144-11-3039. CrossRefGoogle Scholar
  17. Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol 54(4):286–291.  https://doi.org/10.1111/j.1472-765X.2012.03205.x CrossRefGoogle Scholar
  18. Kobayashi H, Oethinger M, Tuohy MJ, Procop GW, Bauer TW (2009) Improved detection of biofilm-formative bacteria by vortexing and sonication: a pilot study. Clin Orthop Related Res 467(5):1360–1364.  https://doi.org/10.1007/s11999-008-0609-5 CrossRefGoogle Scholar
  19. Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4(5):643–650.  https://doi.org/10.1111/j.1751-7915.2011.00259.x CrossRefGoogle Scholar
  20. Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A (2012) Genomics of staphylococcal Twort-like phages—potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216.  https://doi.org/10.1016/B978-0-12-394438-2.00005-0 CrossRefGoogle Scholar
  21. Lungren MP, Christensen D, Kankotia R, Falk I, Paxton BE, Kim CY (2013) Bacteriophage K for reduction of Staphylococcus aureus biofilm on central venous catheter material. Bacteriophage 3(4):e26825.  https://doi.org/10.4161/bact.26825 CrossRefGoogle Scholar
  22. Milheiriço C, Oliveira DC, de Lencastre H (2007) Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother 51:3374–3377.  https://doi.org/10.1128/AAC.00275-07 CrossRefGoogle Scholar
  23. Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P (2016) Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci U S A 113(33):9351–9356.  https://doi.org/10.1073/pnas.1605883113 CrossRefGoogle Scholar
  24. O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A (2005) Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842.  https://doi.org/10.1128/AEM.71.4.1836-1842.2005 CrossRefGoogle Scholar
  25. Oliveira H, Sillankorva S, Merabishvili M, Kluskens LD, Azeredo J (2015) Unexploited opportunities for phage therapy. Front Pharmacol 6:180.  https://doi.org/10.3389/fphar.2015.00180 CrossRefGoogle Scholar
  26. Pantůček R, Rosypalová A, Doškar J, Kailerová J, Ružičková V, Borecká P, Snopková S, Horváth R, Götz F, Rosypal S (1998) The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. Virology 246(2):241–252.  https://doi.org/10.1006/viro.1998.9203 CrossRefGoogle Scholar
  27. Pillich J, Výmola F, Buda J (1969) Assumptions for successful therapy using staphylococcal phage lysates. Zentralbl Bakteriol Orig A 210(3):377–381Google Scholar
  28. Pulverer G, Pillich J, Kocur M (1966) Zwei neue gegen pathogene Staphylokokken wirksame Bakteriophagen. Zentralbl Bakteriol Parasit Infekt Hyg I Orig 201:321–325Google Scholar
  29. Rahman M, Kim S, Kim SM, Seol SY, Kim J (2011) Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27:1087–1093.  https://doi.org/10.1080/08927014.2011.631169 CrossRefGoogle Scholar
  30. Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2013) Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg 131:225–234.  https://doi.org/10.1097/PRS.0b013e31827e47cd CrossRefGoogle Scholar
  31. Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86(5):1439–1449.  https://doi.org/10.1007/s00253-009-2386-9 CrossRefGoogle Scholar
  32. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899.  https://doi.org/10.1111/j.1600-0463. CrossRefGoogle Scholar
  33. Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6.  https://doi.org/10.1016/S0378-1097(04)00041-2. CrossRefGoogle Scholar
  34. Swenson JM, Tenover FC (2005) Cefoxitin disk study group, results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin Microbiol 43(8):3818–3823.  https://doi.org/10.1128/JCM.43.8.3818-3823.2005. CrossRefGoogle Scholar
  35. Vandersteegen K, Mattheus W, Ceyssens P-J, Bilocq F, De Vos D, Pirnay JP, Noben JP, Merabishvili M, Lipinska U, Hermans K, Lavigne R (2011) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. Fitzgerald JR, ed PLoS ONE 6(9):e24418. doi: 10.1371/journal.pone.0024418Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of MedicineMasaryk University and St. Anne’s University HospitalBrnoCzech Republic
  2. 2.Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations