Advertisement

Melanoma-related changes in skin microbiome

  • Jakub MrázekEmail author
  • Chahrazed Mekadim
  • Petra Kučerová
  • Roman Švejstil
  • Hana Salmonová
  • Jitka Vlasáková
  • Renata Tarasová
  • Jana Čížková
  • Monika Červinková
Original Article

Abstract

Melanoma is the least common form of skin tumor, but it is potentially the most dangerous and responsible for the majority of skin cancer deaths. We suggest that the skin microbiome might be changed during the progression of melanoma. The aim of this study is to compare the composition of the skin microbiota between different locations (skin and melanoma) of a MeLiM (Melanoma-bearing Libechov Minipig) pig model (exophytic melanoma). Ninety samples were used for PCR-DGGE analysis with primers specifically targeting the V3 region of the 16S rRNA gene. The profiles were used for cluster analysis by UPGMA and principal coordinate analysis PCoA and also to calculate the diversity index (Simpson index of diversity). By comparing the obtained results, we found that both bacterial composition and diversity were significantly different between the skin and melanoma microbiomes. The abundances of Fusobacterium and Trueperella genera were significantly increased in melanoma samples, suggesting a strong relationship between melanoma development and skin microbiome changes.

Notes

Acknowledgements

This work was supported by grants CIGA 20162019 and 20162001 of the Grant Agency of Czech University of Life Sciences Prague, Project Excellence CZ.02.1.01/0.0/0.0/15_003/0000460 and also by the Ministry of Education, Youth and Sports of the Czech Republic (project number LO1609) under the NPU I program.

References

  1. Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A, Omidi Y (2017) Lactobacillus plantarum induces apoptosis in oral cancer KB cells through up regulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts 7:193–198.  https://doi.org/10.15171/bi.2017.22 CrossRefGoogle Scholar
  2. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC Jr, Morton DL, Ross MI, Sober AJ, Sondak VK (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206.  https://doi.org/10.1200/JCO.2009.23.4799 CrossRefGoogle Scholar
  3. Byrd AL, Belkaid Y, Segre JS (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155.  https://doi.org/10.1038/nrmicro.2017.157 CrossRefGoogle Scholar
  4. Casanova C, Iselin L, von Steiger N, Droz S, Sendi P (2011) Staphylococcus hyicus bacteremia in a farmer. J Clin Microbiol 49:4377–4378.  https://doi.org/10.1128/JCM.05645-11 CrossRefGoogle Scholar
  5. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, Holt RA (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306.  https://doi.org/10.1101/gr.126516.111 CrossRefGoogle Scholar
  6. Cheng Z, Xu H, Wang X, Liu Z (2017) Lactobacillus raises in vitro anticancer effect of geniposide in HSC-3 human oral squamous cell carcinoma cells. Exp Ther Med 5:4586–4594.  https://doi.org/10.15171/bi.2017.22 Google Scholar
  7. Cutler K, Chu P, Levin M, Wallack M, Don PC, Weinberg JM (2000) Pedunculated malignant melanoma. Dermatol Surg 26:127–129.  https://doi.org/10.1046/j.1524-4725.2000.99092.x CrossRefGoogle Scholar
  8. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818.  https://doi.org/10.1038/nature06245 CrossRefGoogle Scholar
  9. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, Bruha J, Neary P, Dezeeuw N, Tommasino M, Jenab M, Prehn JHM, Hughes DJ (2014) Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 33:1381–1390.  https://doi.org/10.1007/s10096-014-2081-3 CrossRefGoogle Scholar
  10. Gallimidi AB, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M (2015) Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6:22613–22623.  https://doi.org/10.18632/oncotarget.4209 CrossRefGoogle Scholar
  11. Grice EA, Kong H, Conlan S, Deming CB, Davis J, Young AC, NISC Comparative Sequencing Program, Bouffard G, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192.  https://doi.org/10.1126/science.1171700 CrossRefGoogle Scholar
  12. Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, Segre JA (2010) Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc Natl Acad Sci U S A 107:14799–14804.  https://doi.org/10.1073/pnas.1004204107 CrossRefGoogle Scholar
  13. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, Shussman N, Almogy G, Cuapio A, Hofer E, Mevorach D, Tabib A, Ortenberg R, Markel G, Miklić K, Jonjic S, Brennan CA, Garrett WS, Bachrach G, Mandelboim O (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355.  https://doi.org/10.1016/j.immuni.2015.01.010 CrossRefGoogle Scholar
  14. Hikawa RS, Kanehisa ES, Enokihara MMSS, Enokihara MY, Hirata SH (2014) Polypoid melanoma and superficial spreading melanoma—different subtypes in the same lesion. An Bras Dermatol 89:666–668.  https://doi.org/10.1590/abd1806-4841.20142802 CrossRefGoogle Scholar
  15. Holt RA, Cochrane K (2017) Tumor potentiating mechanisms of Fusobacterium nucleatum, a multifaceted microbe. Gastroenterology 152:694–696.  https://doi.org/10.1053/j.gastro.2017.01.024 CrossRefGoogle Scholar
  16. Hughes JM, Wilson ME, Brandt CM, Spellerberg B (2009) Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin Infect Dis 49:766–772.  https://doi.org/10.1086/605085 CrossRefGoogle Scholar
  17. Jacouton E, Chain F, Sokol H, Langella P, Bermúdez-Humarán LG (2017) Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol 8:1553.  https://doi.org/10.3389/fimmu.2017.01553 CrossRefGoogle Scholar
  18. Jarosz ŁS, Grądzki Z, Kalinowski M (2014) Trueperella pyogenes infections in swine: clinical course and pathology. Pol J Vet Sci 17:395–404.  https://doi.org/10.2478/pjvs-2014-0055 CrossRefGoogle Scholar
  19. Kaczor T, Fabno ND (2017) The human microbiome in cancer: a mini-review of microbiome optimization in oncology. Natural Medicine Journal 9:20–27Google Scholar
  20. Kasuya K, Yoshida E, Harada R, Hasegawa M, Osaka H, Kato M, Shibahara T (2014) Systemic Streptococcus dysgalactiae subspecies equisimilis infection in a Yorkshire pig with severe disseminated suppurative Meningo-encephalomyelitis. J Vet Med Sci 76:715–718.  https://doi.org/10.1292/jvms.13-0526 CrossRefGoogle Scholar
  21. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298.  https://doi.org/10.1101/gr.126573.111 CrossRefGoogle Scholar
  22. Larsen AM, Bullard SA, Womble M, Arias CR (2015) Community structure of skin microbiome of gulf killifish, Fundulus grandis, is driven by seasonality and not exposure to oiled sediments in a Louisiana salt marsh. Microb Ecol 70:534–544.  https://doi.org/10.1007/s00248-015-0578-7 CrossRefGoogle Scholar
  23. Li W, Han L, Yu P, Ma C, Wu X, Moore JE, Xu J (2014) Molecular characterization of skin microbiota between cancer cachexia patients and healthy volunteers. Microb Ecol 67:735–986.  https://doi.org/10.1007/s00248-013-0345-6 CrossRefGoogle Scholar
  24. Madden TL, Tatusov RL, Zhang J (1996) Applications of network BLAST server. Methods Enzymol 266:131–141.  https://doi.org/10.1016/S0076-6879(96)66011-X CrossRefGoogle Scholar
  25. Marschalek J, Farr A, Marschalek ML, Domig KJ, Kneifel W, Singer CF, Kiss H, Petricevic L (2017) Influence of orally administered probiotic Lactobacillus strains on vaginal microbiota in women with breast cancer during chemotherapy: a randomized placebo-controlled double-blinded pilot study. Breast Care (Basel) 5:335–339.  https://doi.org/10.1159/000478994 CrossRefGoogle Scholar
  26. McGovern VJ, Mihm MC Jr, Bailly C, Booth JC, Clark WH Jr, Cochran AJ, Hardy EG, Hicks JD, Levene A, Lewis MG, Little JH, Milton GW (1973) The classification of malignant melanoma and its histologic reporting. Cancer 32:1446–1457.  https://doi.org/10.1002/1097-0142(197312)32:6<1446::AID-CNCR2820320623>3.0.CO;2-8 CrossRefGoogle Scholar
  27. McIntyre MK, Peacock TJ, Akers KS, Burmeister DM (2016) Initial characterization of the pig skin bacteriome and its effect on In Vitro models of wound healing. PLoS One 11:e0166176.  https://doi.org/10.1371/journal.pone.0166176 CrossRefGoogle Scholar
  28. Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, Kanno S, Igarashi H, Naito T, Adachi Y, Tachibana M, Tanuma T, Maguchi H, Shinohara T, Hasegawa T, Imamura M, Kimura Y, Hirata K, Maruyama R, Suzuki H, Imai K, Yamamoto H, Shinomura Y (2015) Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 6:7209–7220.  https://doi.org/10.18632/oncotarget.3109 Google Scholar
  29. Motevaseli E, Azam R, Akrami SM, Mazlomy M, Saffari M, Modarressi MH, Daneshvar M, Ghafouri-Fard S (2016) The effect of lactobacillus crispatus and lactobacillus rhamnosus culture supernatants on expression of autophagy genes and HPV E6 and E7 oncogenes in the HeLa cell line. Cell J (Yakhteh) 17:601–607.  https://doi.org/10.22074/cellj.2016.3833 Google Scholar
  30. Motevaseli E, Dianatpour A, Ghafouri-Fard S (2017) The role of probiotics in cancer treatment: emphasis on their in vivo and in vitro anti-metastatic effects. Int J Mol Cell Med 6:66–76.  https://doi.org/10.22088/acadpub.BUMS.6.2.1 Google Scholar
  31. Motevaseli E, Khorramizadeh MR, Hadjati J, Bonab SF, Eslami S, Ghafouri-Fard S (2018) Investigation of antitumor effects of Lactobacillus crispatus in experimental model of breast cancer in BALB/c mice. Immunotherapy 10:119–129.  https://doi.org/10.2217/imt-2017-0088 CrossRefGoogle Scholar
  32. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  33. Nagano Y, Watabe M, Porter KG, Coulter WA, Millar BC, Elborn JS, Goldsmith CE, Rooney PJ, Loughrey A, Moore JE (2016) Development of a genus-specific PCR assay for the molecular detection, confirmation and identification of Fusobacterium spp. Br J Biomed Sci 64:74–77.  https://doi.org/10.1080/09674845.2007.11732760 CrossRefGoogle Scholar
  34. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119.  https://doi.org/10.1126/science.1225152 CrossRefGoogle Scholar
  35. Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL (2013) The microbiome extends to subepidermal compartments of normal skin. Nat Commun 4:1431–1431.  https://doi.org/10.1038/ncomms2441 CrossRefGoogle Scholar
  36. Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam S-J, Shirakawa KT, Zhou W, Oh J, Otto M, Fenical W, Gallo RL (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaao4502, 1–9.  https://doi.org/10.1126/sciadv.aao4502 CrossRefGoogle Scholar
  37. Park J, Friendship RM, Poljak Z, Weese JS, Dewey CE (2013) An investigation of exudative epidermitis (greasy pig disease) and antimicrobial resistance patterns of Staphylococcus hyicus and Staphylococcus aureus isolated from clinical cases. Can Vet J 54:139–144Google Scholar
  38. Rasouli BS, Ghadimi-Darsajini A, Nekouian R, Iragian GR (2017) In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression. J Cancer Res Ther 13:246–251.  https://doi.org/10.4103/0973-1482.204897 CrossRefGoogle Scholar
  39. Rodrigues Hoffmann A, Patterson AP, Diesel A, Lawhon SD, Ly HJ, Stephenson CE, Mansell J, Steiner JM, Dowd SE, Olivry T, Suchodolski JS (2014) The skin microbiome in healthy and allergic dogs. PLoS One 9:e83197.  https://doi.org/10.1371/journal.pone.0083197 CrossRefGoogle Scholar
  40. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285.  https://doi.org/10.1038/nrc.2017.13 CrossRefGoogle Scholar
  41. Salava A, Aho V, Pereira P, Koskinen K, Paulin L, Auvinen P, Lauerma A (2016) Skin microbiome in melanomas and melanocytic nevi. Eur J Dermatol 26:49–55.  https://doi.org/10.1684/ejd.2015.2696 Google Scholar
  42. Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. Semin Immunol 25:370–377.  https://doi.org/10.1016/j.smim.2013.09.005 CrossRefGoogle Scholar
  43. Smeekens SP, Huttenhower C, Riza A, Van De Veerdonk F, Zeeuwen PL, Schalkwijk J, Van Der Meer JW, Xavier RJ, Netea MG, Gevers D (2014) Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J. Innate Immun 6:253–262.  https://doi.org/10.1159/000351912 CrossRefGoogle Scholar
  44. Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217.  https://doi.org/10.1038/ismej.2014.77 CrossRefGoogle Scholar
  45. Yang X, Da M, Zhang W, Qi Q, Zhang C, Han S (2018) Role of Lactobacillus in cervical cancer. Cancer Manag Res 10:1219–1229.  https://doi.org/10.2147/CMAR.S165228 CrossRefGoogle Scholar
  46. Zeng B, Zhao J, Guo W, Zhang S, Hua Y, Tang J, Kong F, Yang X, Fu L, Liao K, Yu X, Chen G, Jin L, Shuai S, Yang J, Si X, Ning R, Mishra S, Li Y (2017) High-altitude living shapes the skin microbiome in humans and pigs. Front Microbiol 8:1929.  https://doi.org/10.3389/fmicb.2017.01929 CrossRefGoogle Scholar
  47. Zhao K, Liu M, Zhang X, Wang H, Yue B (2013) In vitro and in vivo expression of virulence genes in Trueperella pyogenes based on a mouse model. Vet Microbiol 163:344–350.  https://doi.org/10.1016/j.vetmic.2013.01.019 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  • Jakub Mrázek
    • 1
    Email author return OK on get
  • Chahrazed Mekadim
    • 1
    • 2
  • Petra Kučerová
    • 1
  • Roman Švejstil
    • 2
  • Hana Salmonová
    • 2
  • Jitka Vlasáková
    • 2
    • 3
  • Renata Tarasová
    • 4
  • Jana Čížková
    • 2
    • 3
  • Monika Červinková
    • 1
  1. 1.Institute of Animal Physiology and Genetics of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesPragueCzech Republic
  3. 3.Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
  4. 4.Faculty of Biomedical EngineeringCzech Technical University in PragueKladnoCzech Republic

Personalised recommendations