Advertisement

Antagonistic activity of Diplodia pinea against phytopathogenic fungi

  • Camila Freitas de Oliveira
  • Paula Francislaine Moura
  • Katlin Suellen Rech
  • Cristiane da Silva Paula de Oliveira
  • Beatriz Cristina Konopatzki Hirota
  • Maislian de Oliveira
  • Cristiane Bezerra da Silva
  • Angela Maria de Souza
  • Josiane de Fátima Gaspari Dias
  • Obdulio Gomes Miguel
  • Celso Garcia Auer
  • Marilis Dallarmi Miguel
Original Article
  • 35 Downloads

Abstract

The ability of Diplodia pinea to inhibit Armillaria sp., Bjerkandera adusta, Botrytis cinerea, and Rhizoctonia sp. mycelium growth was analyzed using the double-culture method. Wild-type fungal strains were incubated in a biochemical oxygen demand incubator using potato agar dextrose medium at 24 ± 2 °C for 35 days in darkness. D. pinea significantly inhibited the growth of all fungi species tested (30.75 to 98.37% inhibition) and showed moderate antagonistic activity (antagonistic index, 14.5). Chemical analysis of D. pinea culture broth extracts revealed steroids, triterpenes, and phenolic compounds. Alkaloids were qualitatively detected in the mycelium crude extract. The presence of these compounds may be related to the antagonistic activity observed. The inhibition ability of D. pinea is due to competition with the tested fungi for substrate and space.

Notes

Acknowledgments

The authors are grateful to the Federal University of Paraná and Embrapa Forest for structural support.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341.  https://doi.org/10.1007/s10658-005-0233-0 CrossRefGoogle Scholar
  2. Badalyan SM, Innocenti G, Garibyan NG (2002) Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr 41:220–225.  https://doi.org/10.14601/Phytopathol_Mediterr-1668 Google Scholar
  3. Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi. 3.ed. New York: MacMillanGoogle Scholar
  4. Barua BS, Suzuki A, Hoang PND (2012) Effects of different nitrogen sources on interactions between ammonia fungi and non-ammonia fungi. Mycology 3:36–53.  https://doi.org/10.1080/21501203.2011.654352 Google Scholar
  5. Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117:237–246.  https://doi.org/10.1007/s10658-006-9089-1 CrossRefGoogle Scholar
  6. Capieau K, Stenlid J, Stenström E (2004) Potential for biological control of Botrytis cinerea in Pinus sylvestris seedlings. Scand J For Res 19:312–319.  https://doi.org/10.1080/02827580310019293 CrossRefGoogle Scholar
  7. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181.  https://doi.org/10.1016/j.copbio.2011.08.007 CrossRefGoogle Scholar
  8. Diekmann MJR, Sutherland DC, Nowell FJ, Morales G (2002) FAO/IPGRI Technical guidelines for the safe movement of germplasm. No. 21. Pinus spp. Food and Agriculture Organization of the United Nations, Rome/International Plant Genetic Resources Institute, RomeGoogle Scholar
  9. Freiesleben SH, Jäger AK (2014) Medicinal and aromatic plants correlation between plant secondary metabolites and their antifungal mechanisms – a review. Med Aromat Plants 3:1–6.  https://doi.org/10.4172/2167-0412.1000154 Google Scholar
  10. Gomes NSB, Auer CG, Júnior AG (2007) Crescimento in vitro de isolados de Armillaria sp. Obtidos de Pinus elliotti var. elliotti sob várias temperaturas. Summa Phytopathol 33:187–189CrossRefGoogle Scholar
  11. Grigoletti Júnior A, dos Santos ÁF, Auer CG (2005) Perspectivas do uso do controle biológico contra doenças florestais. FLORESTA 30:155–165. doi:  https://doi.org/10.5380/rf.v30i12.2362
  12. Jiang Z, Kempinski C, Chappell J (2017) Extraction and analysis of terpenes/Terpenoids. HHS public Access 345–358. doi:  https://doi.org/10.1002/cppb.20024.Extraction
  13. Liu B, Ichinose T, He M, Kobayashi F, Maki T, Yoshida S, Yoshida Y, Arashidani K, Takano H, Nishikawa M, Sun G, Shibamoto T (2014) Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice. Allergy, Asthma Clin Immunol 10:10.  https://doi.org/10.1186/1710-1492-10-10 CrossRefGoogle Scholar
  14. Oliveira CF de, Oliveira VB, Oliveira FF, et al (2014) Quality control parameters of Psychotria fractistipula L.B. Sm., Klein & Delprete (RUBIACEAE): loss on drying, total ash and phytochemical screeningGoogle Scholar
  15. Ownley BH, Windham MT (2007) Biological control of plant pathogens. In: Trigiano RN, Windham MT, Windham AS (eds) Plant pathology concepts and laboratory exercises, 2nd edn. CRC Press, New YorkGoogle Scholar
  16. Rayner ADM, Webber JF (1984) Interspecific mycelial interactions: an overview. In: Jennings DH, Rayner ADM (eds) Ecol physiology fungal mycelium. Cambridge Univ Press, Cambridge, pp 383–418Google Scholar
  17. Regliński T, Rodenburg N, Taylor J, et al (2012) Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (Pinus radiata) seedlingsGoogle Scholar
  18. Riffault L, Destandau E, Pasquier L, et al (2014) Phytochemical analysis of Rosa hybrida cv. “Jardin de Granville” by HPTLC, HPLC-DAD and HPLC-ESI-HRMS: polyphenolic fingerprints of six plant organsGoogle Scholar
  19. Samaras A, Madesis P, Karaoglanidis GS (2016) Detection of sdhB gene mutations in SDHI-resistant isolates of Botrytis cinerea using high resolution melting (HRM) analysis. Front Microbiol 7:1815.  https://doi.org/10.3389/fmicb.2016.01815 CrossRefGoogle Scholar
  20. Santamaría O, Smith DR, Stanosz GR (2010) Interaction between Diplodia pinea and D. scrobiculata in red and Jack pine seedlings. Phytopathology 101:334–339.  https://doi.org/10.1094/PHYTO-07-10-0180 CrossRefGoogle Scholar
  21. Schoeman M, Webber J, Dickinson DJ (1999) The development of ideas in biological control applied to forest productsGoogle Scholar
  22. Singh AK, Pandey MB, Singh UP (2007) Antifungal activity of an alkaloid allosecurinine against some fungi. Mycobiology 35:62–64.  https://doi.org/10.4489/MYCO.2007.35.2.062 CrossRefGoogle Scholar
  23. Singh UP, Sarma BK, Mishra PK, Ray AB (2000) Antifungal activity of venenatine, an indole alkaloid isolated from Alstonia venenata. Folia Microbiol (Praha) 45:173–176.  https://doi.org/10.1007/BF02817419 CrossRefGoogle Scholar
  24. Souza A m, Armstrong L, Merino FJZ et al (2014) In vitro effects of Eugenia pyriformis Cambess., Myrtaceae: antimicrobial activity and synergistic interactions with vancomycin and fluconazole. African J Pharm Pharmacol 8:862–867.  https://doi.org/10.5897/AJPP2014.4100 CrossRefGoogle Scholar
  25. Srivastava BP, Singh KP, Singh U, Pandey VB (1994) Effect of some naturally occurring alkaloids on conidial germination of Botrytis cinerea. Bioved 5:69–72Google Scholar
  26. Sutton BC (1980) The Coelomycetes. In: Kew. Commonwealth Mycological Institute, SurreyGoogle Scholar
  27. Valente LMM, Alves FF, Bezerra GM, Almeida MBS, Rosario SL, Mazzei JL, d’Avila LA, Siani AC (2006) Desenvolvimento e aplicação de metodologia por cromatografia em camada delgada para determinação do perfil de alcalóides oxindólicos pentacíclicos nas espécies sul-americanas do gênero Uncaria. Rev Bras Farmacogn 16:216–223CrossRefGoogle Scholar
  28. Vicente MF, Basilio A, Cabello A, Peláez F (2003) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9(1):15–32.  https://doi.org/10.1046/j.1469-0691.2003.00489.x
  29. Westphalen MC, Tomšovský M, Kout J, Gugliotta AM (2015) Bjerkandera in the Neotropics: phylogenetic and morphological relations of Tyromyces atroalbus and description of a new species. Mycol Prog 14:100.  https://doi.org/10.1007/s11557-015-1124-1 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  • Camila Freitas de Oliveira
    • 1
  • Paula Francislaine Moura
    • 1
  • Katlin Suellen Rech
    • 1
  • Cristiane da Silva Paula de Oliveira
    • 1
    • 2
  • Beatriz Cristina Konopatzki Hirota
    • 1
  • Maislian de Oliveira
    • 1
  • Cristiane Bezerra da Silva
    • 1
  • Angela Maria de Souza
    • 1
  • Josiane de Fátima Gaspari Dias
    • 1
  • Obdulio Gomes Miguel
    • 1
  • Celso Garcia Auer
    • 3
  • Marilis Dallarmi Miguel
    • 1
  1. 1.Postgraduate Program in Pharmaceutical Sciences, Department of PharmacyFederal University of ParanáCuritibaBrazil
  2. 2.Department of Community HealthFederal University of ParanáCuritibaBrazil
  3. 3.Postgraduate Program in Forest Engineering, Department of Agricultural ScienceFederal University of ParanáCuritibaBrazil

Personalised recommendations