Folia Microbiologica

, Volume 63, Issue 3, pp 307–314 | Cite as

Clinical strains of Lactobacillus reduce the filamentation of Candida albicans and protect Galleria mellonella against experimental candidiasis

  • Rodnei Dennis RossoniEmail author
  • Marisol dos Santos Velloso
  • Lívia Mara Alves Figueiredo
  • Carolina Pistille Martins
  • Antonio Olavo Cardoso Jorge
  • Juliana Campos Junqueira
Original Article


Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.



This study was supported by the São Paulo Council of Research—FAPESP, Brazil (Grants 2013/25181-8 and 2015/09770-9).

Compliance with ethical standards

This study has been approved by the Ethics Committee of São Paulo State University (Unesp) under protocol 560.479.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alok A, Singh ID, Singh S, Kishore M, Jha PC, Iqubal MA (2017) Probiotics: a new era of biotherapy. Adv Biomed Res 6(1):31. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Badet C, Thebaud NB (2008) Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol J 2(1):38–48. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bandara HM, Matsubara VH, Samaranayake LP (2017) Future therapies targeted towards eliminating Candida biofilms and associated infections. Expert Rev Anti-Infect Ther 15(3):299–318. CrossRefPubMedGoogle Scholar
  4. Bergin D, Brennan M, Kavanagh K (2003) Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect 5(15):1389–1395. CrossRefPubMedGoogle Scholar
  5. Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K (2006) Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 8(8):2105–2112. CrossRefPubMedGoogle Scholar
  6. Borghi E, Romagnoli S, Fuchs BB, Cirasola D, Perdoni F, Tosi D, Braidotti P, Bulfamante G, Morace G, Mylonakis E (2014) Correlation between Candida albicans biofilm formation and invasion of the invertebrate host Galleria mellonella. Future Microbiol 9(2):163–173. CrossRefPubMedGoogle Scholar
  7. Borghi E, Borgo F, Morace G (2016) Fungal biofilms: update on resistance. Adv Exp Med Biol 931:37–47. CrossRefPubMedGoogle Scholar
  8. Coman MM, Verdenelli MC, Cecchini C, Silvi S, Orpianesi C, Boyko N, Cresci A (2014) In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501((R)), Lactobacillus paracasei IMC 502((R)) and SYNBIO((R)) against pathogens. J Appl Microbiol 117(2):518–527. CrossRefPubMedGoogle Scholar
  9. de Barros PP, Freire F, Rossoni RD, Junqueira JC, Jorge AOC (2017) Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene. Folia Microbiol (Praha) 62(4):317–323. CrossRefGoogle Scholar
  10. de Oliveira FE, Rossoni RD, de Barros PP, Begnini BE, Junqueira JC, Jorge AOC, Leão MVP, de Oliveira LD (2017) Immunomodulatory effects and anti-Candida activity of lactobacilli in macrophages and in invertebrate model of Galleria mellonella. Microb Pathog 110:603–611. CrossRefPubMedGoogle Scholar
  11. Dubovskiy IM, Whitten MMA, Yaroslavtseva ON, Greig C, Kryukov VY, Grizanova EV, Mukherjee K, Vilcinskas A, Glupov VV, Butt TM (2013) Can insects develop resistance to insect pathogenic fungi? PLoS One 8(4):e60248. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Egbe NE, Dornelles TO, Paget CM, Castelli LM, Ashe MP (2017) Farnesol inhibits translation to limit growth and filamentation in C. albicans and S. cerevisiae. Microb Cell 4(9):294–304.  10.15698/mic2017.09.589 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fedhila S, Buisson C, Dussurget O, Serror P, Glomski IJ, Liehl P, Lereclus D, Nielsen-LeRoux C (2010) Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 103(1):24–29. CrossRefPubMedGoogle Scholar
  14. Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E (2010) Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 12(6):488–496. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hashemi A, Villa CR, Comelli EM (2016) Probiotics in early life: a preventative and treatment approach. Food Funct 7(4):1752–1768. CrossRefPubMedGoogle Scholar
  16. Hasslof P, Hedberg M, Twetman S, Stecksen-Blicks C (2010) Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli—an in vitro study. BMC Oral Health 10(1):18. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Höfs S, Mogavero S, Hube B (2016) Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 54(3):149–169. CrossRefPubMedGoogle Scholar
  18. Junqueira JC (2012) Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. Virulence 3(6):474–476. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kadosh D (2016) Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms. Cell Mol Life Sci 73(22):4265–4278. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Leao MV, Goncalves Silva CR, Santos SS, Leite PG (2015) Lactobacillus rhamnosus may change the virulence of Candida albicans. Rev Bras Ginecol Obstet 37:417–420. CrossRefPubMedGoogle Scholar
  21. Liaskovskii TM, Podgorskii VS (2005) Assessment of probiotics according to the international organizations (FAO/WHO). Mikrobiol Z 67(6):104–112PubMedGoogle Scholar
  22. Matsubara VH, Bandara HM, Ishikawa KH, Mayer MP, Samaranayake LP (2016a) The role of probiotic bacteria in managing periodontal disease: a systematic review. Expert Rev Anti-Infect Ther 14(7):643–655. CrossRefPubMedGoogle Scholar
  23. Matsubara VH, Bandara HM, Mayer MP, Samaranayake LP (2016b) Probiotics as antifungals in mucosal candidiasis. Clin Infect Dis 62(9):1143–1153. CrossRefPubMedGoogle Scholar
  24. Matsubara VH, Wang Y, Bandara HM, Mayer MP, Samaranayake LP (2016c) Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol 100(14):6415–6426. CrossRefPubMedGoogle Scholar
  25. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mc Namara L, Carolan JC, Griffin CT, Fitzpatrick D, Kavanagh K (2017) The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. J Insect Physiol 100:82–92. CrossRefPubMedGoogle Scholar
  27. Parahitiyawa NB et al (2006) Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS 114(4):298–306. CrossRefPubMedGoogle Scholar
  28. Patel R, DuPont HL (2015) New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis 60(Suppl 2):S108–S121. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8(5):340–349. CrossRefPubMedGoogle Scholar
  30. Pujia AM, Costacurta M, Fortunato L, Merra G, Cascapera S, Calvani M, Gratteri S (2017) The probiotics in dentistry: a narrative review. Eur Rev Med Pharmacol Sci 21(6):1405–1412PubMedGoogle Scholar
  31. Ribeiro FC, de Barros PP, Rossoni RD, Junqueira JC, Jorge AO (2017) Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. J Appl Microbiol 122(1):201–211. CrossRefPubMedGoogle Scholar
  32. Rivera-Espinoza Y, Gallardo-Navarro Y (2010) Non-dairy probiotic products. Food Microbiol 27(1):1–11. CrossRefPubMedGoogle Scholar
  33. Rossoni RD, Fuchs BB, de Barros PP, Velloso MD, Jorge AO, Junqueira JC, Mylonakis E (2017) Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection. PLoS One 12(3):e0173332. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Smith AR, Macfarlane GT, Reynolds N, O'May GA, Bahrami B, Macfarlane S (2012) Effect of a synbiotic on microbial community structure in a continuous culture model of the gastric microbiota in enteral nutrition patients. FEMS Microbiol Ecol 80(1):135–145. CrossRefPubMedGoogle Scholar
  35. Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B, Edgerton M (2016) Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog 12(3):e1005522. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74(4):ftw018. CrossRefPubMedGoogle Scholar
  37. Verdenelli MC, Coman MM, Cecchini C, Silvi S, Orpianesi C, Cresci A (2014) Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations. J Appl Microbiol 116(5):1297–1307. CrossRefPubMedGoogle Scholar
  38. Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL (2017) Targeting Candida albicans filamentation for antifungal drug development. Virulence 8(2):150–158. CrossRefPubMedGoogle Scholar
  39. Vilela SF et al (2015) Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6(1):29–39. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wu G, Xu L, Yi Y (2016) Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Immunol Lett 174:45–52. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Rodnei Dennis Rossoni
    • 1
    Email author
  • Marisol dos Santos Velloso
    • 1
  • Lívia Mara Alves Figueiredo
    • 1
  • Carolina Pistille Martins
    • 1
  • Antonio Olavo Cardoso Jorge
    • 1
  • Juliana Campos Junqueira
    • 1
  1. 1.Department of Biosciences and Oral DiagnosisSão Paulo State University (Unesp), Institute of Science and TechnologySão José dos CamposBrazil

Personalised recommendations