Advertisement

Folia Microbiologica

, Volume 63, Issue 2, pp 147–153 | Cite as

Chromosomal flhB1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella

  • Yulia Filip’echeva
  • Andrei Shelud’ko
  • Alexei Prilipov
  • Elizaveta Telesheva
  • Dmitry Mokeev
  • Andrei Burov
  • Lilia Petrova
  • Elena KatsyEmail author
Original Article

Abstract

Azospirillum brasilense has the ability of swimming and swarming motility owing to the work of a constitutive polar flagellum and inducible lateral flagella, respectively. The interplay between these flagellar systems is poorly understood. One of the key elements of the flagellar export apparatus is the protein FlhB. Two predicted flhB genes are present in the genome of A. brasilense Sp245 (accession nos. HE577327–HE577333). Experimental evidence obtained here indicates that the chromosomal coding sequence (CDS) AZOBR_150177 (flhB1) of Sp245 is essential for the production of both types of flagella. In an flhB1:: Omegon-Km mutant, Sp245.1063, defects in polar and lateral flagellar assembly and motility were complemented by expressing the wild-type flhB1 gene from plasmid pRK415. It was found that Sp245.1063 lost the capacity for slight but statistically significant decrease in mean cell length in response to transfer from solid to liquid media, and vice versa; in the complemented mutant, this capacity was restored. It was also shown that after the acquisition of the pRK415-harbored downstream CDS AZOBR_150176, cells of Sp245 and Sp245.1063 ceased to elongate on solid media. These initial data suggest that the AZOBR_150176-encoded putative multisensory hybrid sensor histidine kinase–response regulator, in concert with FlhB1, plays a role in morphological response of azospirilla to changes in the hardness of a milieu.

Keywords

Azospirillum brasilense Mixed flagellation Motility 

References

  1. Baldani JI, Videira SS, Teixeira KRDS et al. (2014) The family Rhodospirillaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: alphaproteobacteria and betaproteobacteria. Springer, Berlin, pp 533–618. doi: 10.1007/978-3-642-30197-1_300
  2. Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929. doi: 10.1139/m83-148 CrossRefGoogle Scholar
  3. Bible AN, Stephens BB, Ortega DR et al (2008) Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190:6365–6375. doi: 10.1128/JB.00734-08 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Canals R, Ramirez S, Vilches S et al (2006) Polar flagellum biogenesis in Aeromonas hydrophila. J Bacteriol 188:542–555. doi: 10.1128/JB.188.2.542–555.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chang Y, Tang T, Li JL (2007) Isolation of a flagellar operon in Azospirillum brasilense and functional analysis of FlbD. Res Microbiol 158:521–528. doi: 10.1016/j.resmic.2007.04.005 CrossRefPubMedGoogle Scholar
  6. Döbereiner J, Day JM (1976) Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nijmans CJ (eds) Symposium on nitrogen fixation. Washington State University Press, Pullman, pp 518–538Google Scholar
  7. Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588. doi: 10.1016/0147-619X(78)90016-1 CrossRefPubMedGoogle Scholar
  8. Fellay R, Krisch HM, Prentki P, Frey J (1989) Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria. Gene 76:215–226. doi: 10.1016/0378-1119(89)90162-5 CrossRefPubMedGoogle Scholar
  9. Ferris HU, Furukawa Y, Minamino T et al (2005) FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem 280:41236–41242. doi: 10.1074/jbc.M509438200 CrossRefPubMedGoogle Scholar
  10. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652. doi: 10.1073/pnas.76.4.1648 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fraser GM, Hirano T, Ferris HU et al (2003) Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol Microbiol 48:1043–1057. doi: 10.1046/j.1365-2958.2003.03487.x CrossRefPubMedGoogle Scholar
  12. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182. doi: 10.1128/JB.01887-05 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gullett JM, Bible A, Alexandre G (2017) Distinct domains of CheA confer unique functions in chemotaxis and cell length in Azospirillum brasilense Sp7. J Bacteriol 199:e00189-17. doi: 10.1128/JB.00189-17 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Henry JT, Crosson S (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65:261–286. doi: 10.1146/annurev-micro-121809-151631 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jiang Z-Y, Rushing BG, Bai Y et al (1998) Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol 180:1248–1255PubMedPubMedCentralGoogle Scholar
  16. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197. doi: 10.1016/0378-1119(88)90117-5 CrossRefPubMedGoogle Scholar
  17. Kovtunov EA, Petrova LP, Shelud’ko AV, Katsy EI (2013) Transposon insertion into a chromosomal copy of flhB gene is concurrent with defects in the formation of polar and lateral flagella in bacterium Azospirillum brasilense Sp245. Russ J Genet 49:881–884. doi: 10.1134/S1022795413080061 CrossRefGoogle Scholar
  18. McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351. doi: 10.1016/0092-8674(88)90197-3 CrossRefPubMedGoogle Scholar
  19. Milcamps A, Van Dommelen A, Stigter J et al (1996) The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis. Can J Microbiol 42:467–478. doi: 10.1139/m96-064 CrossRefPubMedGoogle Scholar
  20. Minamino T (2014) Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta 1843:1642–1648. doi: 10.1016/j.bbamcr.2013.09.005 CrossRefPubMedGoogle Scholar
  21. Moens S, Michiels K, Keijers V et al (1995) Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J Bacteriol 177:5419–5426CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moens S, Schloter M, Vanderleyden J (1996) Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J Bacteriol 178:5017–5019CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, second edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  24. Scheludko AV, Katsy EI, Ostudin NA et al (1998) Novel classes of Azospirillum brasilense mutants with defects in the assembly and functioning of polar and lateral flagella. Mol Gen Mikrobiol Virusol 4:33–37Google Scholar
  25. Schelud’ko AV, Makrushin KV, Tugarova AV et al (2009) Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins. Microbiol Res 164:149–156. doi: 10.1016/j.micres.2006.11.008 CrossRefPubMedGoogle Scholar
  26. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430. doi: 10.1371/journal.pgen.1002430 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Yulia Filip’echeva
    • 1
  • Andrei Shelud’ko
    • 1
  • Alexei Prilipov
    • 2
  • Elizaveta Telesheva
    • 1
  • Dmitry Mokeev
    • 1
  • Andrei Burov
    • 1
  • Lilia Petrova
    • 1
  • Elena Katsy
    • 1
    Email author
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Gamaleia Federal Research Centre for Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations