Folia Microbiologica

, Volume 62, Issue 5, pp 409–416 | Cite as

Agar-degrading bacteria isolated from Antarctic macroalgae

  • Roxana Alvarado
  • Sergio LeivaEmail author


This study describes the taxonomic diversity of pigmented, agar-degrading bacteria isolated from the surface of macroalgae collected in King George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were isolated from the surface of the Antarctic macroalgae Adenocystis utricularis, Monostroma hariotii, Iridaea cordata, and Pantoneura plocamioides. Based on the 16S rRNA data, the agarolytic isolates were affiliated to the genera Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella, Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia. Isolates phylogenetically related to Cellulophaga algicola showed the highest agarase activity in culture supernatants when tested at 4 and 37 °C. This is the first investigation of pigmented agar-degrading bacteria, members of microbial communities associated with Antarctic macroalgae, and the results suggest that they represent a potential source of cold-adapted agarases of possible biotechnological interest.


Marine Agar Agarase Activity Colony Morphotypes Pigment Bacterium Antarctic Macroalgae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the INACH staff at Station Prof. Julio Escudero for logistic support. Special thanks to Dr. Iván Gómez and his group (Project Anillo ART1101) for its valuable support during the field work. This study was supported by Grant RT_06-13 from the Instituto Antártico Chileno (INACH).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abell GCJ, Bowman JP (2005) Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol 53:379–391CrossRefPubMedGoogle Scholar
  2. Agogué H, Casamayor EO, Bourrain M, Obernosterer I, Joux F, Herndl GJ, Lebaron P (2005) A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol Ecol 54:269–280CrossRefPubMedGoogle Scholar
  3. Bianchi AC, Olazábal L, Torre A, Loperena L (2014) Antarctic microorganisms as source of the omega-3 polyunsaturated fatty acids. World J Microb Biot 30:1869–1878CrossRefGoogle Scholar
  4. Bowman JP (2000) Description of Cellulophaga algicola sp nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. Nov. Int J Syst Evol Micr 50:1861–1868CrossRefGoogle Scholar
  5. Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the great Salt Plains of Oklahoma. Microb Ecol 48:449–462CrossRefPubMedGoogle Scholar
  7. Chi W, Chang Y, Hong S (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biot 94:917–930CrossRefGoogle Scholar
  8. Choi HJ, Hong JB, Park JJ, Chi WJ, Kim MC, Chang YK, Hong SK (2011) Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea. Biotechnol Bioproc E 16:81–88CrossRefGoogle Scholar
  9. Chong CW, Pearce DA, Convey P, Tan GYA, Wong RCS, Tan IKP (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biol Biochem 42:601–610CrossRefGoogle Scholar
  10. Dhargalkar VK, Verlecar XN (2009) Southern Ocean seaweeds: a resource for exploration in food and drugs. Aquaculture 287:229–242CrossRefGoogle Scholar
  11. Du H, Jiao N, Hu Y, Zeng Y (2006) Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 57:92–105CrossRefPubMedGoogle Scholar
  12. Feng Z, Li M (2013) Purification and characterization of agarase from Rhodococcus sp. Q5, a novel agarolytic bacterium isolated from printing and dyeing wastewater. Aquaculture 372:74–79CrossRefGoogle Scholar
  13. Ferrés I, Amarelle V, Noya F, Fabiano E (2015) Identification of Antarctic culturable bacteria able to produce diverse enzymes of potential biotechnological interest. Adv Polar Sci 26:71–79Google Scholar
  14. Fong N, Burgess M, Barrow K, Glenn D (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756CrossRefPubMedGoogle Scholar
  15. Foreman CM, Dieser M, Greenwood M, Cory RM, Laybourn-Parry J, Lisle JT, Jaros C, Miller PL, Chin YP, McKnight DM (2011) When a habitat freezes solid: microorganisms over-winter within the ice column of a coastal Antarctic lake. FEMS Microbiol Ecol 76:401–412CrossRefPubMedGoogle Scholar
  16. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912CrossRefPubMedGoogle Scholar
  17. Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  18. Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S (2002) Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58CrossRefPubMedGoogle Scholar
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62:716–721CrossRefGoogle Scholar
  20. Kim JW, Brawley SH, Prochnik S, Chovatia M, Grimwood J, Jenkins J, LaButti K, Mavromatis K, Nolan M, Zane M (2016) Genome analysis of Planctomycetes inhabiting blades of the red alga Porphyra umbilicalis. PLoS One 11:e0151883CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lavin P, Gallardo-Cerda J, Torres-Diaz C, Asencio G, Gonzalez M (2013) Antarctic strain of Bacillus sp. with extracellular agarolitic and alginate-lyase activities. Gayana 77:75–82Google Scholar
  22. Leiva S, Alvarado P, Huang Y, Wang J, Garrido I (2015) Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiol Lett 362:fnv206CrossRefPubMedGoogle Scholar
  23. Li J, Sha Y (2015) Expression and enzymatic characterization of a cold-adapted beta-agarase from Antarctic bacterium Pseudoalteromonas sp NJ21. Chin J Oceanol Limn 33:319–327CrossRefGoogle Scholar
  24. Li J, Hu Q, Li Y, Xu Y (2015) Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain. Braz J Microbiol 46:683–690CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed Res Int. doi: 10.1155/2014/512497 Google Scholar
  26. Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biot 98:2917–2935CrossRefGoogle Scholar
  27. McBride MJ (2014) The family Flavobacteriaceae. In: Rosenberg E et al (eds) The prokaryotes. Springer-Verlag, Berlin, pp 643–676Google Scholar
  28. Michel G, Czjzek M, Trincone A (2013) Polysaccharide-degrading enzymes from marine bacteria. In: Trincone A (ed) Marine Enzymes for Biocatalysis: Sources, Biocatalytic Characteristics and Bioprocesses of Marine Enzymes. Woodhead Publishing, pp 429–464Google Scholar
  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  30. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM, Rohde M, Zhukova NV, Frolova GM, Mikhailov VV, Bae KS (2004a) Algibacter lectus gen. Nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Micr 54:1257–1261CrossRefGoogle Scholar
  31. Nedashkovskaya OI, Suzuki M, Vancanneyt M, Cleenwerck I, Lysenko AM, Mikhailov VV, Swings J (2004b) Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov., novel marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Micr 54:1643–1648CrossRefGoogle Scholar
  32. O'Brien A, Sharp R, Russell NJ, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167CrossRefPubMedGoogle Scholar
  33. Ramírez ME (2010) Flora marina bentónica de la región austral de Sudamérica y la Antártica. An Inst Patagonia 38:57–71Google Scholar
  34. Reddy PVV, Rao SSSN, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Srinivas TNR, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre lo enbreen glacier, an Arctic glacier. Res Microbiol 160:538–546CrossRefGoogle Scholar
  35. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258CrossRefGoogle Scholar
  36. Sala MM, Balagué V, Pedrós-Alió C, Massana R, Felipe J, Arin L, Illoul H, Estrada M (2005) Phylogenetic and functional diversity of bacterioplankton during Alexandrium spp. blooms. FEMS Microbiol Ecol 54:257–267CrossRefPubMedGoogle Scholar
  37. Schneegurt MA (2013) Colorimetric microbial diversity analysis and halotolerance along a soil salinity gradient at the great Salt Plains of Oklahoma. Res Microbiol 164:83–89CrossRefPubMedGoogle Scholar
  38. Soliev A, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Alternat Med 2011:1–17CrossRefGoogle Scholar
  39. Song T, Cao Y, Xu H, Zhang W, Fei B, Qiao D, Cao Y (2014) Purification and characterization of a novel β-agarase of Paenibacillus sp. SSG-1 isolated from soil. J Biosci Bioeng 118:125–129CrossRefPubMedGoogle Scholar
  40. Srinivas TNR, Rao SSSN, Reddy PVV, Pratibha MS, Sailaja B, Kavya B, Kishore KH, Begum Z, Singh SM, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic. Curr Microbiol 59:537–547CrossRefPubMedGoogle Scholar
  41. Suzuki H, Sawai Y, Suzuki T, Kawai K (2003) Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng 95:328–334CrossRefPubMedGoogle Scholar
  42. Temuujin U, Chi WJ, Chang YK, Hong SK (2012) Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3 (2), an exo-and endo-type β-agarase-producing neoagarobiose. J Bacteriol 194:142–149CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tropeano M, Coria S, Turjanski A, Cicero D, Bercovich A, Mac Cormack W, Vazquez S (2012) Culturable heterotrophic bacteria from potter cove, Antarctica, and their hydrolytic enzymes production. Polar Res 31:18507CrossRefGoogle Scholar
  44. Tropeano M, Vazquez S, Coria S, Turjanski A, Cicero D, Bercovich A, Mac Cormack W (2013) Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Pol Polar Res 34:253–267Google Scholar
  45. Urvantseva AM, Bakunina IY, Nedashkovskaya OI, Kim SB, Zvyagintseva TN (2006) Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Appl Biochem Micro+ 42:484–491CrossRefGoogle Scholar
  46. Vazquez SC, Mac Cormack WP (2002) Effect of isolation temperature on the characteristics of extracellular proteases produced by Antarctic bacteria. Polar Res 21:63–71CrossRefGoogle Scholar
  47. Wulff A, Iken K, Liliana Quartino M, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  1. 1.Instituto de Bioquímica & Microbiología, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations