Folia Microbiologica

, Volume 62, Issue 4, pp 325–334 | Cite as

Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene

  • Itxaso Montánchez
  • Anna Chao Kaberdina
  • Elena Sevillano
  • Lucía Gallego
  • Susana Rodríguez-Couto
  • Vladimir R. KaberdinEmail author


Polychlorinated aromatic compounds, including pentachlorobenzenes and hexachlorobenzenes, are recalcitrant industrial pollutants that cause adverse effects on living cells. In this paper, the isolation of Pseudomonas fluorescens species with high resistance to pentachlorobenzene (PeCB) is reported. It was found that, in contrast to its slightly negative effect on P. fluorescens growth, PeCB readily inhibited the cell growth of Serratia spp. and Escherichia coli strains, thus indicating that inhibition of bacterial growth by PeCB is species-dependent. Analysis of a P. fluorescens isolate revealed that the exposure to PeCB induced production of reactive oxygen species and led to an increase in the level of alkyl hydroperoxide reductase C (AhpC), an important enzyme enhancing the cell tolerance to organic hydroperoxides usually accumulated under oxidative stress. The putative mechanism conferring PeCB resistance to P. fluorescens and the potential use of P. fluorescens in bioremediation are discussed.


Cell adaptation Polychlorinated benzenes Toxic compounds Oxidative stress Alkyl hydroperoxide reductase C Reactive oxygen species (ROS) 



We are grateful to the staff of the Genomics and Proteomics Units at the Advanced Core Research Facilities (SGIker) of the University of the Basque Country (UPV/EHU) for the technical support and assistance provided. The work was supported by the Basque Government (grant PRE-2013-1-901 and SAIOTEK grant S-PE12UN84) and by IKERBASQUE (Basque Foundation for Science).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12223_2017_501_MOESM1_ESM.pdf (85 kb)
ESM 1 (PDF 85 kb)
12223_2017_501_MOESM2_ESM.pdf (25 kb)
ESM 2 (PDF 24 kb)
12223_2017_501_MOESM3_ESM.docx (27 kb)
ESM 3 (DOCX 26 kb)


  1. Arora PK, Bae H (2014) Role of dehalogenases in aerobic bacterial degradation of chlorinated aromatic compounds. J Chem:157974. doi: 10.1155/2014/157974
  2. Atlas RM, Bartha R (1997) Physiological ecology of microorganisms: adaptations to environmental conditions. In: Ronald M, Bartha R (eds) Microbial ecology: fundamentals and applications. Benjamin Cummings Science Publishing, Menlo Park, CaliforniaGoogle Scholar
  3. Bennasar A, Mulet M, Lalucat J, Garcia-Valdes E (2010) PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol 10:118. doi: 10.1186/1471-2180-10-118 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chavarria M, Nikel PI, Perez-Pantoja D, de Lorenzo V (2013) The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785. doi: 10.1111/1462-2920.12069 CrossRefPubMedGoogle Scholar
  5. Chen X et al (2002) Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. J Biol Chem 277:37519–37526. doi: 10.1074/jbc.M203762200 CrossRefPubMedGoogle Scholar
  6. de Bont JA, Vorage MJ, Hartmans S, van den Tweel WJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52:677–680PubMedPubMedCentralGoogle Scholar
  7. Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19:463–480. doi: 10.1007/s10532-007-9155-1 CrossRefPubMedGoogle Scholar
  8. Gregoraszczuk EL et al (2014) Hexachlorobenzene and pentachlorobenzene accumulation, metabolism and effect on steroid secretion and on CYP11A1 and CYP19 expression in cultured human placental tissue. Reprod Toxicol 43:102–110. doi: 10.1016/j.reprotox.2013.12.004 CrossRefPubMedGoogle Scholar
  9. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454. doi: 10.1038/nrmicro3032 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ivanova IA, Kambarev S, Popova RA, Naumovska EG, Markoska KB, Dushkin CD (2010) Determination of Pseudomonas putida live cells with classic cultivation and staining with “Live/Dead Baclight Bacterial Viability Kit”. Biotechnology & Biotechnological Equipment 24:567–570. doi: 10.1080/13102818.2010.10817898 CrossRefGoogle Scholar
  11. Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264:1488–1496PubMedGoogle Scholar
  12. Joux F, Lebaron P (1997) Ecological implications of an improved direct viable count method for aquatic bacteria. Appl Environ Microbiol 63:3643–3647PubMedPubMedCentralGoogle Scholar
  13. Mao DP, Zhou Q, Chen CY, Quan ZX (2012) Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol 12:66. doi: 10.1186/1471-2180-12-66 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4:2338–2347. doi: 10.1021/pr050264q CrossRefPubMedGoogle Scholar
  15. Mochizuki S (1977) Photochemical dechlorination of PCBs. Chem Eng Sci 32:1205–1210CrossRefGoogle Scholar
  16. Mohammad SM, Dennis GP (1997) Electrochemical reduction of di-, tri- and tetrahalobenzenes at carbon cathodes in dimethylformamide. Evidence for a halogen dance during the electrolysis of 1,2,4,5-tetrabromobenzene. J Electroanal Chem 435:47–53CrossRefGoogle Scholar
  17. Neilson AH (1996) An environmental perspective on the biodegradation of organochlorine xenobiotics. Int Biodeter Biodeg 37:3–21CrossRefGoogle Scholar
  18. Netuschil L, Auschill TM, Sculean A, Arweiler NB (2014) Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms—which stain is suitable? BMC Oral Health 14:2. doi: 10.1186/1472-6831-14-2 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Oldenhuis R, Kuijk L, Lammers A, Janssen DB, Witholt B (1989) Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Appl Microbiol Biotechnol 30:211–217CrossRefGoogle Scholar
  20. Oliver BG, Nicol KD (1982) Chlorobenzenes in sediments, water, and selected fish from Lakes Superior, Huron, Erie, and Ontario. Environ Sci Technol 16:532–536CrossRefGoogle Scholar
  21. Poole LB, Ellis HR (1996) Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35:56–64. doi: 10.1021/bi951887s CrossRefPubMedGoogle Scholar
  22. Robinson PE, Mack GA, Remmers J, Levy R, Mohadjer L (1990) Trends of PCB, hexachlorobenzene, and beta-benzene hexachloride levels in the adipose tissue of the U.S. population. Environ Res 53:175–192CrossRefPubMedGoogle Scholar
  23. Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181CrossRefPubMedPubMedCentralGoogle Scholar
  24. Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444. doi: 10.1016/j.copbio.2008.07.012 CrossRefPubMedGoogle Scholar
  25. Tartaglia LA, Storz G, Brodsky MH, Lai A, Ames BN (1990) Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J Biol Chem 265:10535–10540PubMedGoogle Scholar
  26. Thomas RS, Gustafson DL, Pott WA, Long ME, Benjamin SA, Yang RS (1998) Evidence for hepatocarcinogenic activity of pentachlorobenzene with intralobular variation in foci incidence. Carcinogenesis 19:1855–1862CrossRefPubMedGoogle Scholar
  27. Winn LM (2003) Homologous recombination initiated by benzene metabolites: a potential role of oxidative stress. Toxicol Sci 72:143–149CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Itxaso Montánchez
    • 1
  • Anna Chao Kaberdina
    • 2
  • Elena Sevillano
    • 1
  • Lucía Gallego
    • 1
  • Susana Rodríguez-Couto
    • 3
    • 4
  • Vladimir R. Kaberdin
    • 1
    • 4
    • 5
    Email author
  1. 1.Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  3. 3.Unit of Environmental EngineeringCeit-IK4San SebastianSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  5. 5.Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU)PlentziaSpain

Personalised recommendations