Folia Microbiologica

, Volume 61, Issue 3, pp 255–260 | Cite as

Main photoautotrophic components of biofilms in natural draft cooling towers

Article

Abstract

While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.

Notes

Acknowledgments

The work was supported by the University of South Bohemia under Grant GAJU 04-146/2013P and Academy of Sciences of the Czech Republic under long-term research development Project No. RVO67985939.

The authors also wish to thank all the companies who provided access to their cooling towers, to Pavel Ambroz from Temelín power plant for valuable information concerning tower maintenance, and also to anonymous reviewers for valuable comments.

Supplementary material

12223_2015_429_MOESM1_ESM.xls (12 kb)
Supplementary Table S1 List of species found in particular localities. Taxa found in bottom part of the towers are marked with an asterisk (*). Unmarked taxa were found in upper parts only
12223_2015_429_Fig4_ESM.gif (612 kb)
Supplementary Figure S2

Selection of most common phototropic taxa found in cooling towers: (a) Cladophora glomerata; (b) Gloeocapsa compacta; (c, d) Scytonema myochrous; (e) Phormidium cf. grunowianum; (f) Brasilonema sp.

12223_2015_429_MOESM2_ESM.tif (15.4 mb)
High resolution image

References

  1. Crispim CA, Gaylarde PM, Gaylarde CC, Neilan BA (2006) Deteriogenic cyanobacteria, on historic buildings in Brazil detected by culture and molecular techniques. Int Biodeterior Biodegrad 57:239–243. doi: 10.1016/j.ibiod.2006.03.001 CrossRefGoogle Scholar
  2. Ettl H, Gärtner G (1995) Sylabus der Boden-, Luft- und Flechtealgen. Gustav Fischer, Stuttgart, Jena, New YorkGoogle Scholar
  3. Garcia-Pichel F, Ramirez-Reinat E, Gao QJ (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc Natl Acad Sci U S A 107:21749–21754. doi: 10.1073/pnas.1011884108 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Hauer T (2007) Rock-inhabiting cyanoprokaryota from South Bohemia (Czech Republic). Nova Hedwigia 85:379–392CrossRefGoogle Scholar
  5. Hauer T (2010) Phototrophic biofilms on the interior walls of concrete Iterson-type cooling towers. J Appl Phycol 22:733–736. doi: 10.1007/s10811-010-9513-y CrossRefGoogle Scholar
  6. Hindák F, Wolowski K, Hindáková A (2011) The epilithon of a cooling tower of the power plant at Belchatow, Poland. Oceanol Hydrobiol Stud 40:38–43. doi: 10.2478/s13545-011-0039-y CrossRefGoogle Scholar
  7. Houk V (2003) Atlas of freshwater centric diatoms with a brief key and descriptions. Part I., Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Czech Phycology, Supplement 1: 1–107Google Scholar
  8. Kaštovský J, Řeháková K, Bastl M, Vymazal J, King R (2008) Experimental assessment of phosphorus effects on algal assemblages in dosing mesocosms. In: Richardson C (ed) The Everglades Experiments. Springer, New York, pp 461–475CrossRefGoogle Scholar
  9. Komárek J (2013) Cyanoprokaryota 3. Teil/Part 3: Heterocytous genera vol 19/3. Süsswasserflora von Mitteleuropa. Springer Spektrum, Berlin, HeidelbergCrossRefGoogle Scholar
  10. Komárek J, Anagnostidis K (1998) Cyanoprokaryota, 1.Teil/ 1st Part: Chroococcales. vol 19/1. Süsswasserflora von Mitteleuropa. Gustav Fischer, JenaGoogle Scholar
  11. Komárek J, Anagnostidis K (2005) Cyanoprokaryota, 2. Teil/ 2nd Part: Oscillatoriales. vol 19/2. Süsswasserflora von Mitteleuropa. Elsevier/Spektrum Akademischer Verlag, MünchenGoogle Scholar
  12. Kovář P et al, (2010) Správkové hmoty s fotokatalytickým účinkem. Zpravodaj WTA CZ 2010:36–39Google Scholar
  13. Ludensky M (2005) Microbiological control in cooling water systems. Directory of Microbiocides for the Protection of Materials: A Handbook, pp. 121–139Google Scholar
  14. Ludyanskiy ML (1991) Algal fouling in cooling waters. Biofouling 3:13–21CrossRefGoogle Scholar
  15. Oksanen J et al (2013) Vegan: community ecology package., 2.0-10 ednGoogle Scholar
  16. Ortega-Morales BO, Gaylarde C, Anaya-Hernandez A, Chan-Bacab MJ, De la Rosa-Garcia SC, Arano-Recio D, Montero-M J (2013) Orientation affects Trentepohlia-dominated biofilms on Mayan monuments of the Rio Bec style. Int Biodeterior Biodegrad 84:351–356. doi: 10.1016/j.ibiod.2012.07.014 CrossRefGoogle Scholar
  17. Pagnier I, Merchat M, La Scola B (2009) Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future Microbiol 4:615–629. doi: 10.2217/fmb.09.25 CrossRefPubMedGoogle Scholar
  18. R Develoment Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  19. Radea C, Louvrou I, Pantazidou A, Economou-Amilli A (2010) Photosynthetic microorganisms as epibionts and euendoliths on biotic substrates in a thermal spring with ferric-iron deposits. Fottea 10:129–140. doi: 10.5507/fot.2010.007 CrossRefGoogle Scholar
  20. Ramirez M, Hernandez-Marine M, Mateo P, Berrendero E, Roldan M (2011) Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments. Fottea 11:73–86. doi: 10.5507/fot.2011.007 CrossRefGoogle Scholar
  21. Sládečková A (1961) Zarůstání chladicích zařízení parních elektráren. Energetika 11:327–329Google Scholar
  22. Sládečková A (1969) Control of slimes and algae in cooling systems. Verh Internat Verein Limnol 17:532–538Google Scholar
  23. Sládečková A, Sládeček V (1958) Der Aufwuchs auf den Kühltürmen der Dampfkraftwerke und einige einfache Abhilfemassnahmen. Hydrobiologia 12:43–54CrossRefGoogle Scholar
  24. Stommel EW, Field NC, Caller TA (2013) Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Med Hypotheses 80:142–145. doi: 10.1016/j.mehy.2012.11.012 CrossRefPubMedGoogle Scholar
  25. Taylor M, Ross K, Bentham R (2009) Legionella, Protozoa, and Biofilms: interactions within complex microbial systems. Microb Ecol 58:538–547. doi: 10.1007/s00248-009-9514-z CrossRefPubMedGoogle Scholar
  26. Tison D, Pope D, Cherry W, Fliermans C (1980) Growth of Legionella pneumophila in association with bluegreen algae (cyanobacteria). Appl Environ Microbiol 39:456–459PubMedPubMedCentralGoogle Scholar
  27. Wang J, Liu M, Xiao H, Wu W, Xie M, Sun M, Zhu C, Li P (2013) Bacterial community structure in cooling water and biofilm in an industrial recirculating cooling water system. Water Sci Technol 68(4):940–947. doi: 10.2166/wst.2013.334 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2015

Authors and Affiliations

  1. 1.Institute of Botany of the Czech Academy of SciencesTřeboňCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations