Folia Microbiologica

, Volume 59, Issue 6, pp 523–526

C. difficile ribotype 027 or 176?

Article

Abstract

Clostridium difficile is a major nosocomial pathogen of present times. The analysis of 624 C. difficile strains from 11 hospitals in the Czech Republic in 2013 revealed that 40 % of isolates belonged to ribotype 176. These results suggest that the incidence of CDI (C. difficile infection) in the Czech Republic has increased probably in connection with C. difficile ribotype 176. The molecular systems Xpert C. difficile Epi assay (Cepheid Inc., Sunnyvale, CA) diagnoses toxigenic strains and supports C. difficile ribotype 027 determination based on three specific target places in the toxigenic C. difficile genome. Twenty-nine strains cultivated from stool specimens were evaluated by the Xpert systems as presumed C. difficile PCR ribotype 027 were confirmed as a C. difficile ribotype 176 based on ribotyping. A further 120 C. difficile strains of ribotype 176 were examined for the presence of genes tcdB, cdtB and deletion in position 117 in the tcdC gene. Our experience shows that due to the correspondence of the target places, C. difficile ribotype 176 may be interpreted as ribotype 027 by Xpert C. difficile Epi assay (Cepheid Inc., Sunnyvale, CA). Further molecular analysis as ribotyping based on capillary electrophoresis is needed to differentiate between C. difficile ribotypes 027 and 176 for appropriate epidemiological situation control on local and national levels.

References

  1. Babady NE, Stiles J, Ruggiero P, Khosa P, Huang D, Shuptar S, Kamboj M, Kiehn TE (2010) Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol. doi:10.1128/JCM.01648-10 Google Scholar
  2. Barbut F, Braun M, Burghoffer B, Lalande V, Eckert C (2009) Rapid detection of toxigenic strains of Clostridium difficile in diarrheal stools by real-time PCR. J Clin Microbiol. doi:10.1128/JCM.00309-09 PubMedPubMedCentralGoogle Scholar
  3. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ, ECDIS Study Group (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet. doi:10.1016/S0140-6736(10)61266-4 Google Scholar
  4. Belanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG (2003) Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol 41(2):730–734PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beran V, Chmelar D, Vobejdova J, Konigova A, Nemec J, Tvrdik J (2014) Sensitivity to antibiotics of Clostridium difficile toxigenic nosocomial strains. Folia Microbiol (Praha). doi:10.1007/s12223-013-0283-1 Google Scholar
  6. Coltella L, Mancinelli L, Onori M, Lucignano B, Menichella D, Sorge R, Raponi M, Mancini R, Russo C (2013) Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-013-1865-1 PubMedGoogle Scholar
  7. de Jong E, de Jong AS, Bartels CJ, van der Rijt-van den Biggelaar C, Melchers WJ, Sturm PD (2012) Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. Eur J Clin Microbiol Infect. doi:10.1007/s10096-012-1558-1 Google Scholar
  8. Goldenberg SD, Dieringer T, French GL (2010) Detection of toxigenic Clostridium difficile in diarrheal stools by rapid real-time polymerase chain reaction. Diagn Microbiol Infect. doi:10.1016/j.diagmicrobio.2010.02.019 Google Scholar
  9. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. doi:10.1038/ng.2478 PubMedCentralGoogle Scholar
  10. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka G, Allerberger F, Kuijper EJ (2008) Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol. doi:10.1099/jmm.0.47714-0 PubMedCentralGoogle Scholar
  11. Indra A, Blaschitz M, Kernbichler S, Reischl U, Wewalka G, Allerberger F (2010) Mechanisms behind variation in the Clostridium difficile 16S-23S rRNA intergenic spacer region. J Med Microbiol. doi:10.1099/jmm.0.020792-0 PubMedPubMedCentralGoogle Scholar
  12. Knetsch CW, Hensgens MP, Harmanus C, van der Bijl MW, Savelkoul PH, Kuijper EJ, Corver J, van Leeuwen HC (2011) Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology. doi:10.1099/mic.0.051953-0 PubMedGoogle Scholar
  13. Kok J, Wang Q, Thomas LC, Gilbert GL (2011) Presumptive identification of Clostridium difficile strain 027/NAP1/BI on Cepheid Xpert: interpret with caution. J Clin Microbiol. doi:10.1128/JCM.00752-11 PubMedPubMedCentralGoogle Scholar
  14. Krutova M, Matejkova J, Nyc O (2013) First results of molecular typing of Clostridium difficile in the Czech Republic. Zprávy CEM (SZÚ Praha) 22(12):399–401Google Scholar
  15. Kuijper EJ, Coignard B, Tüll P, ESCMID Study Group for Clostridium difficile; EU Member States; European Centre for Disease Prevention and Control (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12(Suppl 6):2–18PubMedCrossRefGoogle Scholar
  16. Nyc O, Pituch H, Matejkova J, Obuch-Woszczatynski P, Kuijper EJ (2011) Clostridium difficile PCR ribotype 176 in the Czech Republic and Poland. Lancet. doi:10.1016/S0140-6736(11)60575-8 PubMedGoogle Scholar
  17. Pancholi P, Kelly C, Raczkowski M, Balada-Llasat JM (2012) Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J Clin Microbiol. doi:10.1128/JCM.06597-11 Google Scholar
  18. Persson S, Torpdahl M, Olsen KE (2008) New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. doi:10.1111/j.1469-0691.2008.02092.x Google Scholar
  19. Peterson LR, Manson RU, Paule SM, Hacek DM, Robicsek A, Thomson RB Jr, Kaul KL (2007) Detection of toxigenic Clostridium difficile in stool samples by real-time polymerase chain reaction for the diagnosis of C. difficile-associated diarrhea. Clin Infect Dis 45(9):1152–1160PubMedCrossRefGoogle Scholar
  20. Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. doi:10.1038/nrmicro2164 PubMedGoogle Scholar
  21. Shin S, Kim M, Kim M, Lim H, Kim H, Lee K, Chong Y (2012) Evaluation of the Xpert Clostridium difficile assay for the diagnosis of Clostridium difficile infection. Ann Lab Med. doi:10.3343/alm.2012.32.5.355 Google Scholar
  22. Smith A (2005) Outbreak of Clostridium difficile infection in an English hospital linked to hypertoxin-producing strains in Canada and the US. Euro Surveill 10(6):E050630.2PubMedGoogle Scholar
  23. Spigaglia P, Mastrantonio P (2002) Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40(9):3470–3475PubMedCrossRefPubMedCentralGoogle Scholar
  24. Stamper PD, Babiker W, Alcabasa R, Aird D, Wehrlin J, Ikpeama I, Gluck L, Carroll KC (2009) Evaluation of a new commercial TaqMan PCR assay for direct detection of the Clostridium difficile toxin B gene in clinical stool specimens. J Clin Microbiol. doi:10.1128/JCM.01490-09 Google Scholar
  25. Terhes G, Urban E, Soki J, Nacsa E, Nagy E (2009) Comparison of a rapid molecular method, the BD GeneOhm Cdiff assay, to the most frequently used laboratory tests for detection of toxin-producing Clostridium difficile in diarrheal feces. J Clin Microbiol. doi:10.1128/JCM.01133-09 PubMedPubMedCentralGoogle Scholar
  26. Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW (2012) Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. doi:10.1099/jmm.0.036194-0 PubMedGoogle Scholar
  27. Viala C, Le Monnier A, Maataoui N, Rousseau C, Collignon A, Poilane I (2012) Comparison of commercial molecular assays for toxigenic Clostridium difficile detection in stools: BD GeneOhm Cdiff, XPert C. difficile and Illumigene C. difficile. J Microbiol Methods. doi:10.1016/j.mimet.2012.04.017 PubMedGoogle Scholar
  28. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366(9491):1079–1084PubMedCrossRefGoogle Scholar
  29. Zidaric V, Kevorkijan BK, Oresic N, Janezic S, Rupnik M (2011) Comparison of two commercial molecular tests for the detection of Clostridium difficile in the routine diagnostic laboratory. J Med Microbiol. doi:10.1099/jmm.0.030163-0 PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2014

Authors and Affiliations

  1. 1.Department of Medical Microbiology, 2nd Faculty of MedicineCharles University in Prague and Motol University HospitalPrague 5Czech Republic
  2. 2.DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of MedicineCharles University in Prague and Motol University HospitalPrague 5Czech Republic

Personalised recommendations