Advertisement

Folia Microbiologica

, Volume 58, Issue 6, pp 657–662 | Cite as

Error estimation in environmental DNA targets quantification due to PCR efficiencies differences between real samples and standards

  • Leonardo Martín Pérez
  • Mariana Fittipaldi
  • Bárbara Adrados
  • Jordi Morató
  • Francesc CodonyEmail author
Article

Introduction

Nowadays, as in the past, our knowledge of microbiology is limited because of the capacity of available technology tools. In recent decades, molecular techniques are playing a central role in the understanding of the microbial world. In this sense, a complete scientific evaluation of biological samples is not possible without using molecular biology. The most influential technique has probably been the polymerase chain reaction (PCR), which allows us to work beyond classical microbiology. With PCR, in some cases, the need for culture may be avoided. Nevertheless, until the development of real-time PCR, our evaluation of the microbial complexity has been merely qualitative.

Real-time PCR is an evolution of the conventional endpoint PCR wherein the amplification of a target gene and its fluorescence detection occurs simultaneously during each cycle. Different strategies based on the use of nonspecific DNA intercalating dyes or specific fluorescent probes exist for linking...

Keywords

Polymerase Chain Reaction Environmental Sample Polymerase Chain Reaction Reaction Polymerase Chain Reaction Efficiency Sample Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Ministry of Education and Science of Spain and the Comissionat per a Universitats i Recerca del Departament d’Innovacio´ and Universitats i Empresa de la Generalitat de Catalunya i del Fons Social Europeu, for supporting this study. Financial support was provided by Alfa Network TECSPAR (RED ALFA II-0543- FI-FAFCD; Sustainable technologies for potabilization and wastewater treatment), and by grant CTM2008-06676-C05-02/TECNO from the Ministry of Science and Innovation of Spain to Jordi Morató. The authors also want to thank to the peer review process of Folia Microbiologica for improving the quality of the present work.

References

  1. Bastien P, Procop GW, Reischl U (2008) Quantitative real-time PCR is not more sensitive than “conventional” PCR. J Clin Microbiol 46:1897–1900. doi: 10.1128/JCM.02258-07 PubMedCrossRefGoogle Scholar
  2. Behets J, Declerck P, Delaedt Y, Creemers B, Olleviera F (2007) Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Legionella pneumophila in water samples. J Microbiol Methods 68:137–144. doi: 10.1016/j.mimet.2006.07.002 PubMedCrossRefGoogle Scholar
  3. Brankatschk R, Bodenhausen N, Zeyer J, Bürgmann H (2012) Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl Environ Microbiol 78(12):4481–4489. doi: 10.1128/AEM.07878-11 PubMedCrossRefGoogle Scholar
  4. Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–125PubMedGoogle Scholar
  5. Haramoto E, Katayama H, Oguma K, Ohgaki S (2005) Application of cation-coated filter method to detection of noroviruses, enteroviruses, adenoviruses, and torque teno viruses in the Tamagawa River in Japan. Appl Environ Microbiol 71:2403–2411. doi: 10.1128/AEM.71.5.2403-2411.2005 PubMedCrossRefGoogle Scholar
  6. Higuchi R, Fokler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026–1030. doi: 10.1038/nbt0993-1026 PubMedCrossRefGoogle Scholar
  7. Jothikumar N, Cromeans TL, Hill VR, Lu X, Sobsey MD, Erdman DD (2005) Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Appl Environ Microbiol 71:3131–3136. doi: 10.1128/AEM.71.6.3131-3136.2005 PubMedCrossRefGoogle Scholar
  8. Kitchen RR, Kubista M, Tichopad A (2010) Statistical aspects of quantitative real-time PCR experiment design. Methods 50(4):231–236. doi: 10.1016/j.ymeth.2010.01.025 PubMedCrossRefGoogle Scholar
  9. Layton A, Mckay L, Williams D, Garrett VR, Sayler G (2006) Development of Bacteroides 16S rRNA gene Taqman-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72:4214–4224. doi: 10.1128/AEM.01036-05 PubMedCrossRefGoogle Scholar
  10. Love JL, Scholes P, Gilpin B, Savill M, Lin S, Samuel L (2006) Evaluation of uncertainty in quantitative real-time PCR. J Microbiol Methods 67:349–356. doi: 10.1016/j.mimet.2006.04.005 PubMedCrossRefGoogle Scholar
  11. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi: 10.1016/S0304-3940(02)01423-4 PubMedCrossRefGoogle Scholar
  12. Rasmussen R (2001) Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid cycle real-time PCR—methods and applications. Springer Press, Heidelberg, pp 21–34CrossRefGoogle Scholar
  13. Rebrikov DV, Trofimov DY (2006) Real-time PCR: a review of approaches to data analysis. Appl Biochem Microbiol 42(5):455–463. doi: 10.1134/S0003683806050024 CrossRefGoogle Scholar
  14. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl Acids 37:e45. doi: 10.1093/nar/gkp045 CrossRefGoogle Scholar
  15. Rutledge RG, Côté C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31(16):e93. doi: 10.1093/nar/gng093 PubMedCrossRefGoogle Scholar
  16. Töwe S, Kleindeindam K, Schloter M (2010) Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples. J Microbiol Methods 82:338–341. doi: 10.1016/j.mimet.2010.07.005 PubMedCrossRefGoogle Scholar
  17. Tuomi JM, Voorbraak F, Jones DL, Ruijter JM (2010) Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50(4):313–322. doi: 10.1016/j.ymeth.2010.02.003 PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2013

Authors and Affiliations

  • Leonardo Martín Pérez
    • 1
    • 2
  • Mariana Fittipaldi
    • 1
  • Bárbara Adrados
    • 1
  • Jordi Morató
    • 1
  • Francesc Codony
    • 1
    Email author
  1. 1.Laboratori de Microbiologia Sanitaria i Mediambiental (MSM-Lab) & Aquasost - UNESCO Chair in SustainabilityUniversitat Politècnica de Catalunya (UPC)TerrassaSpain
  2. 2.Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR) & Instituto de Química Rosario (IQUIR, UNR-CONICET)RosarioArgentina

Personalised recommendations