Advertisement

Folia Microbiologica

, Volume 58, Issue 6, pp 561–568 | Cite as

Purification and biochemical characterization of glucose–cellobiose-tolerant cellulases from Scytalidium thermophilum

  • Jean Carlos Rodrigues Silva
  • Luis Henrique Souza Guimarães
  • José Carlos Santos Salgado
  • Rosa Prazeres Melo Furriel
  • Maria Lourdes T. M. Polizeli
  • José César Rosa
  • João Atilio JorgeEmail author
Article

Abstract

Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.

Keywords

Cellulase Cellobiose Sodium Acetate Buffer CMCase Activity Saccharide Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a grant from CNPq. J.C.R.S. received a Ph.D. scholarship from FAPESP, and M.L.T.M.P., R.P.M.F., and J.A.J. are research fellows of CNPq. This work was part of the Doctoral thesis of J.C.R.S (Dept. Bioquímica-FMRP-USP).

References

  1. Bath MK, Bath S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620. doi: 10.1016/S0734-9750(97)00006-2 CrossRefGoogle Scholar
  2. Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296. doi: 10.1002/bit.21238 PubMedCrossRefGoogle Scholar
  3. Dubbois M, Gilles KA, Hamilton JK, Rebbers PA, Smith F (1956) Colorimetric method for determination of sugars and related substrate. Anal Chem 28:350–356CrossRefGoogle Scholar
  4. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol: the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi: 10.1016/j.tibtech.2006.10.004 PubMedCrossRefGoogle Scholar
  5. Haki GD, Rakshiti SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34. doi: 10.1016/S0960-8524(03)00033-6 PubMedCrossRefGoogle Scholar
  6. Jabbar A, Rashid MH, Javed MR, Perveen R, Malana MA (2008) Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition. J Ind Microbiol Biotechnol 35:515–524. doi: 10.1007/s10295-008-0310-4 PubMedCrossRefGoogle Scholar
  7. Jorgensen H, Ericksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861. doi: 10.1016/S0141-0229(03)00056-5 CrossRefGoogle Scholar
  8. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. doi: 10.1007/s10295-008-0327-8 PubMedCrossRefGoogle Scholar
  9. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  10. Leone FA, Baranauskas JA, Furriel RPM, Borin IA (2005) SigrafW: an easy-to-use program for fitting enzyme kinetic data. Biochem Mol Biol Educ 33:399–403. doi: 10.1002/bmb.2005.49403306399 PubMedCrossRefGoogle Scholar
  11. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  12. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488. doi: 1092-2172/00/$04.0010 PubMedCrossRefGoogle Scholar
  13. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  14. Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM (2010) Purification and biochemical properties of a glucose-stimulated β-d-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48:53–62. doi: 10.1007/s12275-009-0159-x PubMedCrossRefGoogle Scholar
  15. O’Farrel PZ, Goodman HM, O’Farrel PH (1977) High resolution two dimensional eletrophoresis of basic as well as acid proteins. Cell 12:1133–1142CrossRefGoogle Scholar
  16. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1896. doi: 10.1016/j.procbio.2003.09.013 CrossRefGoogle Scholar
  17. Sandgren M, Gualfetti PJ, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C (2003) The Humicola grisea Cel12A enzyme structure at 1.2 Å resolution and the impact of its free cysteine residues on thermal stability. Protein Sci 12:2782–2793. doi: 10.1110/ps.03220403 PubMedCrossRefGoogle Scholar
  18. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New YorkGoogle Scholar
  19. Siddiqui KS, Azhar MJ, Rashid MH, Ghuri TM, Rajoka MI (1997) Purification and the effect of manganese ions on the activity of carboxymethylcellulases from Aspergillus niger and Cellulomonas biazotea. Folia Microbiol 43:303–311CrossRefGoogle Scholar
  20. Tao YM, Zhu XZ, Huang JZ, Ma SJ, Wu XB, Long MN, Chen QX (2010) Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9. J Agric Food Chem 58:6126–6130. doi: 10.1021/jf1003896 PubMedCrossRefGoogle Scholar
  21. Viikari L, Alapuranen M, Puranem T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145. doi: 10.1007/10_2007_065 PubMedGoogle Scholar
  22. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112. doi: 10.1016/0076-6879(88)60109-1 CrossRefGoogle Scholar
  23. Yin LJ, Huang PS, Lin HH (2010) Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. J Agric Food Chem 58:9833–9837. doi: 10.1021/jf1019104 PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2013

Authors and Affiliations

  • Jean Carlos Rodrigues Silva
    • 1
    • 2
  • Luis Henrique Souza Guimarães
    • 3
  • José Carlos Santos Salgado
    • 1
  • Rosa Prazeres Melo Furriel
    • 3
  • Maria Lourdes T. M. Polizeli
    • 3
  • José César Rosa
    • 4
  • João Atilio Jorge
    • 3
    Email author
  1. 1.Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Instituto Federal de EducaçãoCiência e Tecnologia de São PauloMatãoBrazil
  3. 3.Departamento de Biologia e Química, Faculdade de Filosofia, Ciências de Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  4. 4.Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations