Folia Microbiologica

, Volume 58, Issue 6, pp 483–490 | Cite as

Characterization of the chitinase gene in Bacillus thuringiensis Mexican isolates

  • Ninfa M. Rosas-GarcíaEmail author
  • Juan M. Fortuna-González
  • J. Eleazar Barboza-Corona


The chitinase gene was molecularly characterized in five Bacillus thuringiensis Mexican isolates, MR10, MR11, MR21, MR33, and RN52. The proteins derived from these genes were tested for their chitinase activity using fluorogenic chitin derivatives. In order to verify if chitinase genes were functional, they were cloned, and enzymatic activity of recombinant chitinases was also tested. Results indicated that enzymes exhibited endochitinase activity. The highest hydrolytic activity shown against the chitin tetrameric derivative occurred at pH value of 6.5, and the optimum activity temperature was around 60 °C. The recombinant endochitinases showed a molecular mass of ∼77 kDa with isoelectric points from 6.5 to 7.0. Analysis of the nucleotide sequences showed highly conserved sequences among all isolates (97–99 %). Gene sequence analysis revealed a putative promoter (−35 TTGAGA and −10 TTAATA) and a Shine–Dalgarno sequence (5´-AGGAGA-3´) upstream from the open reading frame. The deduced amino acid sequence revealed that the proteins are modular enzymes composed by a family 18 glycosyl hydrolase domain located between amino acids 134 and 549, a fibronectin-binding domain (580 through 656), and a chitin-binding domain (664 through 771). The deduced amino acid sequences of our isolates showed a similarity close to 100 % respect to the sequences reported in the GenBank database.


Chitin Chitinase GlcNAc Recombinant Strain Chitinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study received financial support from Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional and from COFAA-IPN. Juan M. Fortuna-González was a recipient of a fellowship from Consejo Nacional de Ciencia y Tecnología, Mexico.

The experiments conducted in this manuscript comply with the current laws of Mexico.

Conflict of interest

The authors of this manuscript declare that they do not have conflict of interest.


  1. Barboza-Corona JE, Contreras JC, Velázquez-Robledo R, Bautista-Justo M, Gómez-Ramírez M, Cruz-Camarillo R, Ibarra JE (1999) Selection of chitinolytic strains of Bacillus thuringiensis. Biotechnol Lett 12:1125–1129CrossRefGoogle Scholar
  2. Barboza-Corona JE, Nieto-Mazzoco E, Velázquez-Robledo R, Salcedo-Hernández R, Bautista M, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029PubMedCrossRefGoogle Scholar
  3. Barboza-Corona JE, Reyes-Rios DM, Salcedo-Hernández R, Bideshi DK (2008) Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from B. thuringiensis subsp. kurstaki HD-73. Mol Biotechnol 39:29–37PubMedCrossRefGoogle Scholar
  4. Barboza-Corona JE, Ortiz-Rodríguez T, de la Fuente-Salcido N, Bideshi DK, Ibarra JE, Slacedo-Hernández R (2009) Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Antonie van Leeuwenhoek 96:31–42Google Scholar
  5. Brandt CR, Adang MJ, Spence KD (1978) The peritrophic membrane: ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata. J Invertebr Pathol 32:12–24CrossRefGoogle Scholar
  6. Casique-Arroyo G, Bideshi D, Salcedo-Hernández R, Barboza-Corona JE (2007) Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74. Antonie van Leeuwenhoek 92:1–9PubMedCrossRefGoogle Scholar
  7. Castañeda-Agulló M (1995) Studies on the biosynthesis of extracellular proteases by bacteria. J Gen Physiol 369–375Google Scholar
  8. Cederkvist FH, Parmer MP, Vårum KM, Eijsink VGH, Sørlie M (2008) Inhibition of a family 18 chitinase by chitooligosaccharides. Carbohyd Polym 74:41–49CrossRefGoogle Scholar
  9. Dawson RMC, Elliott DC, Jones KM (1969) Data for biochemical research. Oxford University Press, LondonGoogle Scholar
  10. Driss F, Kallasi-Awad M, Zouari N, Jaova S (2005) Molecular characterization of a novel chitinase from B. thuringiensis subsp. kurstaki. J Appl Microbiol 99:945–953PubMedCrossRefGoogle Scholar
  11. Driss F, Rouis S, Azzouz H, Tounsi S, Zouari N, Jaoua S (2011) Integration of a recombinant chitinases into Bacillus thuringiensis parasporal insecticidal crystal. Curr Microbiol 61:281–288CrossRefGoogle Scholar
  12. Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ (2008) Towards new enzymes for biofuels: lesson from chitinase research. Trends Biotechnol 26:228–235PubMedCrossRefGoogle Scholar
  13. Elvin CM, Vuocolo T, Pearson RD, Riding GA, East I, Eisemann CH, Tellam R (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina: cDNA and deduced amino acid sequences. J Biol Chem 271:8925–8935PubMedCrossRefGoogle Scholar
  14. LaemmLi UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  15. Lin Y, Xiong W (2004) Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti. Biotechnol Lett 26:635–639PubMedCrossRefGoogle Scholar
  16. Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP, Yuan ZM (2002) Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93:374–379PubMedCrossRefGoogle Scholar
  17. Liu B-L, Kao P-M, Tseng Y-M, Feng K-C (2003) Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzyme Microb Tech 33:410–415CrossRefGoogle Scholar
  18. Liu D, Cai J, Xie C-C, Liu C, Chen Y-H (2010) Purification and partial characterization of a 36 kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb Tech 46:252–256CrossRefGoogle Scholar
  19. Morales de la Vega L, Barboza-Corona JE, Aguilar-Uscanga MG, Ramírez-Lepe M (2006) Purification and characterization of an exochitinase from B. thuringiensis ssp. aizawai and its action against phytopathogenic fungi. Can J Microbiol 52:651–657CrossRefGoogle Scholar
  20. Ortiz-Pérez EL (2006) Caracterización parcial de las proteínas cristalinas producidas por cepas nativas de Bacillus thuringiensis. Thesis. Unidad Académica Multidisciplinaria Reynosa–Aztlán. Universidad Autónoma de Tamaulipas, MéxicoGoogle Scholar
  21. Pospiech A, Newman B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217–218PubMedCrossRefGoogle Scholar
  22. Regev A, Kelle M, Strizhov N, Sneh B, Prudovsky E, Chet I (1996) Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586PubMedGoogle Scholar
  23. Rosas-García NM, Mireles-Martínez M, Hernández-Mendoza JL, Ibarra JE (2008) Screening of cry gene contents of Bacillus thuringiensis strains isolated from avocado orchards in Mexico, and their insecticidal activity towards Argyrotaenia sp. (Lepidoptera: Tortricidae) larvae. J Appl Microbiol 104:224–230PubMedGoogle Scholar
  24. Sampson MN, Gooday GW (1998) Involvement of chitinases of B. thuringiensis during pathogenesis in insects. Microbiology 144:2189–2194PubMedCrossRefGoogle Scholar
  25. Smirnoff WA, Valero JA (1977) Determination of the chitinolytic activity of nine subspecies of Bacillus thuringiensis. J Invertebr Pathol 30:265–266CrossRefGoogle Scholar
  26. Sneh B, Schuster S, Gross S (1983) Improvement of the insecticidal activity of B. thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and UV protectant. Z Angew Entomol 96:77–83CrossRefGoogle Scholar
  27. Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biot 56:395–401CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2013

Authors and Affiliations

  • Ninfa M. Rosas-García
    • 1
    Email author
  • Juan M. Fortuna-González
    • 1
  • J. Eleazar Barboza-Corona
    • 2
  1. 1.Laboratorio de Biotecnología AmbientalCentro de Biotecnología Genómica-IPNReynosaMexico
  2. 2.División Ciencias de la Vida, Departamento de AlimentosUniversidad de Guanajuato Campus Irapuato-SalamancaIrapuatoMexico

Personalised recommendations