Folia Microbiologica

, Volume 57, Issue 4, pp 253–258 | Cite as

Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro

  • Robin C. Anderson
  • Maša Vodovnik
  • Byeng R. Min
  • William E. Pinchak
  • Nathan A. Krueger
  • Roger B. Harvey
  • David J. Nisbet
Article

Abstract

Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins.

References

  1. Ailes E, Demma L, Hurd S, Hatch J, Jones TF, Vugia D, Cronquist A, Tobin-D’Angelo M, Larson K, Laine E, Edge K, Zansky S, Scallan E (2008) Continued decline in the incidence of Campylobacter infections, FoodNet 1996–2006. Foodborne Path Dis 5:329–337PubMedCrossRefGoogle Scholar
  2. Anderson RC, Krueger NA, Byrd JA, Harvey RB, Callaway TR, Edrington TS, Nisbet DJ (2009) Effects of thymol and diphenyliodonium chloride against Campylobacter spp. during pure and mixed culture in vitro. J Appl Microbiol 107:1258–1268PubMedCrossRefGoogle Scholar
  3. Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet Parasitol 99:205–219PubMedCrossRefGoogle Scholar
  4. Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65:1199–1221PubMedCrossRefGoogle Scholar
  5. Baek KT, Vegge CS, Skórko-Glonek J, Brøndsted L (2011) Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol 77:57–66PubMedCrossRefGoogle Scholar
  6. Chung KT, Lu Z, Chou MW (1998) Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol 36:1053–1060PubMedCrossRefGoogle Scholar
  7. Denny J, Boelaert F, Borck B, Heuer OE, Ammon A, Makela P (2007) Zoonotic infections in Europe: trends and figures - a summary of the EFSA-ECDC annual report. Euro Surveill 12:pii=3336 (2007) Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=3336
  8. Diğrak M, Alma MH, İçim A, Şen S (1999) Antibacterial and antifungal effects of various commercial plant extracts. Pharm Biol 37:216–220CrossRefGoogle Scholar
  9. Foo LY, Porter LJ (1981) The structure of tannins of some edible fruits. J Sci Food Agric 32:711–716CrossRefGoogle Scholar
  10. Gilani GS, Cockell KA, Sepehr E (2005) Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 88:967–987PubMedGoogle Scholar
  11. Gutierrez-Bañuelos H, Pinchak WE, Min BR, Carstens GE, Anderson RC, Tedeschi LO, Krueger WK, Krueger NA, Lancaster PA, Gomez RR (2011) Effects of feed-supplementation and hide-spray application of two sources of tannins on enteric and hide bacteria of feedlot cattle. J Environ Sci Health B 46:360–365PubMedCrossRefGoogle Scholar
  12. Hashimoto T, Kumazawa S, Nanjo F, Hara Y, Nakayama T (1999) Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci Biotechnol Biochem 63:2252–2255PubMedCrossRefGoogle Scholar
  13. He Q, Shi B, Yao K (2006) Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem 95:250–254CrossRefGoogle Scholar
  14. Horrocks SM, Anderson RC, Nisbet DJ, Ricke SC (2009) Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15:18–25PubMedCrossRefGoogle Scholar
  15. Jackson DN, Davis B, Tirado SM, Duggal M, van Frankenhuyzen JK, Deaville D, Wijesinghe MAK, Tessaro M, Trevors JT (2009) Survival mechanisms and culturability of Campylobacter jejuni under stress conditions. Antonie Van Leeuwenhoek 96:377–394PubMedCrossRefGoogle Scholar
  16. Krueger WK, Gutierrez-Bañuelos H, Carstens GE, Min BR, Pinchak WE, Anderson RC, Krueger NA, Forbes TDA (2010) Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim Feed Sci Technol 159:1–9CrossRefGoogle Scholar
  17. Lacombe A, Wu CH, Tyler S, Edwards K (2010) Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. Int J Food Microbiol 139:102–107PubMedCrossRefGoogle Scholar
  18. McSweeney CS, Palmer B, McNeill DM, Krause DO (2001) Microbe interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91:83–93Google Scholar
  19. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19CrossRefGoogle Scholar
  20. Min BR, Pinchk WE, Merkel R, Walker S, Tomita G, Anderson RC (2008) Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci Res Essays 3:66–73Google Scholar
  21. Mole S, Waterman PG (1987) A critical analysis of techniques for measuring tannins in ecological studies II. Techniques for biochemically defining tannins. Oecologia 72:148–156CrossRefGoogle Scholar
  22. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037CrossRefGoogle Scholar
  23. Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893PubMedCrossRefGoogle Scholar
  24. Nohynek LJ, Alakomi H-L, Kähkönen MP, Heinonen M, Helander IM, Oksman-Caldentey Puupponen-Pimiä RH (2006) Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 54:18–32PubMedCrossRefGoogle Scholar
  25. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883CrossRefGoogle Scholar
  26. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Hever D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339PubMedCrossRefGoogle Scholar
  27. Serrano J, Puupponen-Pimiä R, Dauer A, Aura A-M, Saura-Calixto F (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:S310–S329PubMedCrossRefGoogle Scholar
  28. Terao J, Piskula M, Yao Q (1994) Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid-peroxidation in phospholipid-bilayers. Arch Biochem Biophys 308:278–284PubMedCrossRefGoogle Scholar
  29. Velayudhan J, Kelly DJ (2001) Analysis of gluceoneogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148:685–694Google Scholar
  30. Wu VC-H, Qui X, Bushway A, Harper L (2008) Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT- Food Sci Technol 41:1834–1841CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2012

Authors and Affiliations

  • Robin C. Anderson
    • 1
  • Maša Vodovnik
    • 2
  • Byeng R. Min
    • 3
  • William E. Pinchak
    • 3
  • Nathan A. Krueger
    • 1
  • Roger B. Harvey
    • 1
  • David J. Nisbet
    • 1
  1. 1.United States Department of Agriculture/Agricultural Research ServiceSouthern Plains Agricultural Research CenterCollege StationUSA
  2. 2.Microbiology and Microbial Biotechnology, Department of Animal ScienceUniversity of LjubljanaDomžaleSlovenia
  3. 3.Texas AgriLife ResearchVernonUSA

Personalised recommendations