Folia Microbiologica

, Volume 57, Issue 2, pp 91–97 | Cite as

Antimicrobial resistance in Salmonella spp. recovered from patients admitted to six different hospitals in Tehran, Iran from 2007 to 2008

  • Mercedeh Tajbakhsh
  • Rene S. Hendriksen
  • Zahra Nochi
  • Mohammad Reza Zali
  • Frank M. Aarestrup
  • Lourdes Garcia-Migura


The objective of this study was to assess the genotypic diversity associated with antimicrobial susceptibility of Salmonella serovars isolated from patients arriving with diarrhoea to six hospitals of Tehran, Iran. During 2007–2008, a cross-sectional convenience study was performed. Stool samples were screened for the presence of Salmonella, serotyped, tested for antimicrobial susceptibility using disk diffusion and examined for the presence of relevant resistance genes and integrons by PCR. A total of 1,120 patients were screened for the presence of Salmonella. Out of 71 Salmonella isolates recovered, the following serovars were identified: 17 Typhi, 14 Paratyphi C, 13 Enteritidis, 11 Paratyphi B, 10 Paratyphi A and six Infantis. Most resistance was observed towards sulfamethoxazole (30%), tetracyclines (25%), nalidixic acid (22%), spectinomycin (17%), trimethoprim (15%), ampicillin (14%) and kanamycin (14%). The tetracycline resistance genes tet(A), tet(B), and tet(G) were found in 28%, 14% and 6% of the tetracycline resistant isolates, respectively. The genes aadA, aadB, strA, strB and aphA1-Iab were present in 83%, 55%, 34%, 1% and 17% of the aminoglycoside resistant isolates, respectively. Additionally, bla PSE and bla TEM β-lactamase genes were detected in 63% and 18% of the ampicillin-resistant isolates. The 23 sulphonamide resistant isolates harboured sul1 and intI1 genes, typical to class 1 integrons. Nine of these isolates also yielded amplicons for intI2 (class 2 integrons). The presence of multi-drug resistant Salmonella may compromise the successful treatment of enteric infection diseases. The enforcement of strict prescription practices will help to minimise the emergence of resistance.


Trimethoprim Antimicrobial Resistance Stool Sample Nalidixic Acid Enteric Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the World Health Organization Global Foodborne Infections Network (


  1. Aarestrup FM, Lertworapreecha M, Evans MC, Bangtrakulnonth A, Chalermchaikit T, Hendriksen RS, Wegener HC (2003a) Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries. J Antimicrob Chemother 52(715):718Google Scholar
  2. Aarestrup FM, Wiuff C, Molbak K, Threlfall EJ (2003b) Is it time to change fluoroquinolone breakpoints for Salmonella spp.? Antimicrob Agents Chemother 47(827):829Google Scholar
  3. Ashtiani M, Monajemzadeh M, Kashi L (2009) Trends in antimicrobial resistance of fecal Shigella and Salmonella isolates in Tehran, Iran. Indian J Pathol Microbiol 52(52):55Google Scholar
  4. Bruun T, Sorensen G, Forshell LP, Jensen T, Nygard K, Kapperud G, Lindstedt BA, Berglund T, Wingstrand A, Petersen RF, Muller L, Kjelso C, Ivarsson S, Hjertqvist M, Lofdahl S, Ethelberg S (2009) An outbreak of Salmonella Typhimurium infections in Denmark, Norway and Sweden, 2008. Euro Surveill 14Google Scholar
  5. Carattoli A (2001) Importance of integrons in the diffusion of resistance. Vet Res 32(243):259Google Scholar
  6. Carlson SA, Bolton LF, Briggs CE, Hurd HS, Sharma VK, Fedorka-Cray PJ, Jones BD (1999) Detection of multiresistant Salmonella Typhimurium DT104 using multiplex and fluorogenic PCR. Mol Cell Probes 13(213):222Google Scholar
  7. Charifi M, Saleh AA (2006) Retrospective study on the isolated strains of Salmonella in an Iranian hospital in Kermanshah. East Mediterr Health J 12(798):803Google Scholar
  8. Clinical and Laboratory Standards Institute (2010) Performance standards for antimicrobial disk susceptibility tests. Approved standard M100-S20, 9th edn. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  9. Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82(346):353Google Scholar
  10. Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10(272):288Google Scholar
  11. Frana TS, Carlson SA, Griffith RW (2001) Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype Typhimurium phage type DT104. Appl Environ Microbiol 67(445):448Google Scholar
  12. Gebreyes WA, Altier C (2002) Molecular characterization of multidrug-resistant Salmonella enterica subsp. Enterica serovar Typhimurium isolates from swine. J Clin Microbiol 40(2813):2822Google Scholar
  13. Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45(723):726Google Scholar
  14. Gonzalez-Escobedo G, Marshall JM, Gunn JS (2011) Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol 9(9):14Google Scholar
  15. Hamidian M, Tajbakhsh M, Walther-Rasmussen J, Zali MR (2009) Emergence of extended-spectrum b-lactamases in clinical isolates of Salmonella enterica in Tehran. Iran Jpn J Infect Dis 62(368):371Google Scholar
  16. Hopkins KL, Davies RH, Threlfall EJ (2005) Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 25(358):373Google Scholar
  17. Jafari F, Shokrzadeh L, Hamidian M, Salmanzadeh-Ahrabi S, Zali MR (2008) Acute diarrhea due to enteropathogenic bacteria in patients at hospitals in Tehran. Jpn J Infect Dis 61(269):273Google Scholar
  18. Jafari F, Garcia-Gil LJ, Salmanzadeh-Ahrabi S, Shokrzadeh L, Aslani MM, Pourhoseingholi MA, Derakhshan F, Zali MR (2009) Diagnosis and prevalence of enteropathogenic bacteria in children less than 5 years of age with acute diarrhea in Tehran children’s hospitals. J Infect 58(21):27Google Scholar
  19. Kanungo S, Dutta S, Sur D (2008) Epidemiology of typhoid and paratyphoid fever in India. J Infect Dev Ctries 2(454):460Google Scholar
  20. Kariuki S (2008) Typhoid fever in Sub-Saharan Africa: challenges of diagnosis and management of infections. J Infect Dev Ctries 2(443):447Google Scholar
  21. Kendall P, Medeiros LC, Hillers V, Chen G, DiMascola S (2003) Food handling behaviors of special importance for pregnant women, infants and young children, the elderly, and immune-compromised people. J Am Diet Assoc 103(1646):1649Google Scholar
  22. Kessel AS, Gillespie IA, O’Brien SJ, Adak GK, Humphrey TJ, Ward LR (2001) General outbreaks of infectious intestinal disease linked with poultry, England and Wales, 1992–1999. Commun Dis Public Health 4(171):177Google Scholar
  23. Levesque C, Piche L, Larose C, Roy PH (1995) PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39(185):191Google Scholar
  24. Madsen L, Aarestrup FM, Olsen JE (2000) Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella Typhimurium. Vet Microbiol 75(73):82Google Scholar
  25. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50(882):889Google Scholar
  26. Mehrabian S, Jaberi E (2007) Isolation, identification and antimicrobial resistance patterns of Salmonella from meat products in Tehran. Pak J Biol Sci 10(122):126Google Scholar
  27. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139(Suppl 1):S3–S15PubMedCrossRefGoogle Scholar
  28. Ng LK, Mulvey MR, Martin I, Peters GA, Johnson W (1999) Genetic characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar Typhimurium DT104. Antimicrob Agents Chemother 43(3018):3021Google Scholar
  29. Noble DJ, Lane C, Little CL, Davies R, Pinna ED, Larkin L, Morgan D (2011) Revival of an old problem: an increase in Salmonella enterica serovar Typhimurium definitive phage type 8 infections in 2010 in England and Northern Ireland linked to duck eggs. Epidemiol Infect 140:146–149PubMedCrossRefGoogle Scholar
  30. Nogrady N, Kardos G, Bistyak A, Turcsanyi I, Meszaros J, Galantai Z, Juhasz A, Samu P, Kaszanyitzky JE, Paszti J, Kiss I (2008) Prevalence and characterization of Salmonella Infantis isolates originating from different points of the broiler chicken–human food chain in Hungary. Int J Food Microbiol 127(162):167Google Scholar
  31. Peirano G, Agerso Y, Aarestrup FM, dos Prazeres RD (2005) Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. J Antimicrob Chemother 55:301–305PubMedCrossRefGoogle Scholar
  32. Popoff MY, Bockemühl J, Gheesling LL (2004) Supplement 2002 (no. 46) to the Kauffmann–White scheme. Res Microbiol 155(568):570Google Scholar
  33. Pourshafie MR, Saifi M, Mousavi SF, Sedaghat M, Nikbakht GH, Rubino S (2008) Clonal diversity of Salmonella enterica serotype Typhi isolated from patients with typhoid fever in Tehran. Scand J Infect Di 40(18):23Google Scholar
  34. Rad M, Kooshan M, Mesgarani H (2010) Quinolone resistance among Salmonella enterica and Escherichia coli of animal origin. Comp Clin Pathol. doi: 10.1007/s00580-010-1078-2
  35. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galán JE, Ginocchio C, Curtiss Iii R, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6(271):279Google Scholar
  36. Ranjbar R, Giammanco GM, Aleo A, Plano MRA, Naghoni A, Owlia P, Mammina C (2010) Characterization of the first extended-spectrum b-lactamase-producing nontyphoidal Salmonella strains isolated in Tehran. Iran Foodborne Pathog Dis 7(91):95Google Scholar
  37. Saenz Y, Vinue L, Ruiz E, Somalo S, Martinez S, Rojo-Bezares B, Zarazaga M, Torres C (2010) Class 1 integrons lacking qacedelta1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Vet Microbiol 144(493):497Google Scholar
  38. Sandvang D, Aarestrup FM, Jensen LB (1997) Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104. FEMS Microbiol Lett 157(177):181Google Scholar
  39. Shahada F, Chuma T, Dahshan H, Akiba M, Sueyoshi M, Okamoto K (2010) Detection and characterization of extended-spectrum beta-lactamase (tem-52)-producing Salmonella serotype Infantis from broilers in Japan. Foodborne Pathog Dis 7(515):521Google Scholar
  40. Vinue L, Saenz Y, Rojo-Bezares B, Olarte I, Undabeitia E, Somalo S, Zarazaga M, Torres C (2010) Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital. Int J Antimicrob Agents 35(492):496Google Scholar
  41. White PA, McIver CJ, Rawlinson WD (2001) Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45(2658):2661Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2012

Authors and Affiliations

  • Mercedeh Tajbakhsh
    • 1
  • Rene S. Hendriksen
    • 2
  • Zahra Nochi
    • 1
  • Mohammad Reza Zali
    • 1
  • Frank M. Aarestrup
    • 2
  • Lourdes Garcia-Migura
    • 3
    • 4
  1. 1.Research Center for Gastroenterology and Liver DiseaseShahid Beheshti University of Medical ScienceTehranIran
  2. 2.National Food InstituteTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Centre de Recerca en Sanitat Animal (CReSA)BellaterraSpain
  4. 4.Institut de Recerca i Tecnologia Agroalimentàries (IRTA)BarcelonaSpain

Personalised recommendations