Folia Microbiologica

, 56:339 | Cite as

The ciliate, Troglodytella abrassarti, contributes to polysaccharide hydrolytic activities in the chimpanzee colon

  • I. Profousová
  • K. Mihaliková
  • T. Laho
  • Z. Váradyová
  • K. J. Petrželková
  • D. Modrý
  • S. KišidayováEmail author


Entodiniomorphid ciliates are intestinal protists inhabiting the colons of African great apes. The participation of intestinal entodiniomorphid ciliates in ape hindgut digestion has been proposed, but little data have been available to support the hypothesis. We measured the specific activities of carboxymethyl cellulase, xylanase, inulinase, and α-amylase against different polysaccharides in the feces of captive chimpanzees and evaluated the participation of the entodiniomorphid ciliate, Troglodytella abrassarti, in these activities. T. abrassarti contributed to the total fecal hydrolytic activities of CM-cellulase by 16.2%, α-amylase by 5.95%, and xylanase by 0.66%. Inulinase activity in T. abrassarti samples was not measurable at reaction conditions used. The ciliates, T. abrassarti, actively participate in the chimpanzee hindgut fermentation of fiber and starch.


Xylanase Activity Herbivorous Mammal Wild Chimpanzee Amylolytic Activity Inulinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was supported by funds of The Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (VEGA 2/0009/08), Internal Grant Agency of VFU Brno 245/2009/FVL, Grant Agency of Czech Republic (524/06/0264 and 206/09/0927), and Slovak Research and Development Agency (APVV-SK-CZ-0086-07). We would like to thank people from Zoo Liberec, namely to P. Bolechová, S. Rohlová, J. Kyzlíková, and K. Kestler for their assistance with the sample collection.


  1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270CrossRefGoogle Scholar
  2. Belzecki G, Miltko R, Michalowski T (2004) Why does the establishment of the starch preferring Entodinium caudatum in the rumen decrease the numbers of the fibrolytic ciliate Eudiplodinium maggii? Folia Microbiol 49:139–142CrossRefGoogle Scholar
  3. Belzecki G, Newbold CJ, McEwan NR, McIntosh FM, Michalowski T (2007) Characterization of the amylolytic properties of the rumen ciliate protozoan Eudiplodinium maggii. Journal of Animal and Feed Sciences 16:590–606Google Scholar
  4. Bera-Maillet C, Devillard E, Cezette M, Jouany JP, Forano E (2005) Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiol Lett 244:149–156PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Brumpt T, Joyeux C (1912) Sur un infusoire nouveau parasite de chimpanzé. Troglodytella abrassarti n.g. n.sp. Bull Soc Pathol Exot 5:503Google Scholar
  7. Coleman GS (1978) The metabolism of cellulose, glucose and starch by the rumen ciliate protozoon Eudiplodinium maggii. J Gen Microbiol 107:359–366Google Scholar
  8. Coleman GS (1986a) The amylase activity of 14 species of entodiniomorphid protozoa and the distribution of amylase in rumen digesta fractions of sheep containing no protozoa or one of 7 different protozoal populations. J Agr Sci 107:709–721CrossRefGoogle Scholar
  9. Coleman GS (1986b) The distribution of carboxymethylcellulase between fractions taken from the rumens of sheep containing no protozoa or one of 5 different protozoal populations. J Agr Sci 106:121–127CrossRefGoogle Scholar
  10. Collet JY, Bourreau E, Cooper RW, Tutin CEG, Fernandez M (1984) Experimental demonstration of cellulose digestion by Trogodytella gorillae, an intestinal ciliate of lowland gorillas (Gorilla gorilla gorilla). Int J Primatol 5:328Google Scholar
  11. Conklin-Brittain NL, Wrangham RW, Hunt KD (1998) Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. Int J Primatol 19:971–998CrossRefGoogle Scholar
  12. Czerkawski JW (1976) Chemical composition of microbial matter in the rumen. J Sci Food Agric 27:621–632PubMedCrossRefGoogle Scholar
  13. Englyst HN, Hay S, MacFarlane GT (1987) Polysaccharide breakdown by mixed populations of human fecal bacteria. FEMS Microbiol Lett 45:163–171CrossRefGoogle Scholar
  14. Groliere CA, Senaud J, Jouany JP, Grain J, de Puytorac P (1980) Implantation et développement des populations de protozoaires ciliés (Polyplastron multivesiculatum, Entodinium sp., Isotricha prostoma) dans le rumen de moutons recevant différents régimes alimantaires. II. Régimes a base de foin, enrichis en céréales. Protistologica 16:394Google Scholar
  15. Holloway WD, Tasman-Jones C, Lee SP (1978) Digestion of certain fractions of dietary fiber in humans. Am J Clin Nutr 31:927–930PubMedGoogle Scholar
  16. Jouany JP, Senaud J (1983) Effect of rumen ciliates on the digestive utilization of various carbohydrate-rich diets and on the end-products formed in the rumen. II. Utilization of inulin, saccharose and lactose. Reprod Nutr Dev 23:607–623PubMedCrossRefGoogle Scholar
  17. Kariya R, Morita Z, Oura R, Sekine J (1989) The in vitro study on the rates of starch consumption and volatile fatty acids production by the rumen fluid with or without ciliates. Jap J Zootech Sci 60:609–613Google Scholar
  18. Keys JE Jr, Van Soest PJ, Young EP (1969) Comparative study of the digestibility of forage cellulose and hemicellulose in ruminants and nonruminants. J Anim Sci 29:11–15PubMedGoogle Scholar
  19. Kišidayová S, Váradyová Z, Mihaliková K (2007) Highly efficient galvanotaxis apparatus for cleaning and concentrating rumen ciliates. Folia Microbiol 52:637–640CrossRefGoogle Scholar
  20. Kišidayová S, Váradyová Z, Pristaš P, Piknová M, Nigutová K, Petrželková KJ, Profousová I, Schovancová K, Kamler J, Modrý D (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 71:548–557PubMedCrossRefGoogle Scholar
  21. Martin C, Millet L, Fonty G, Michalet-Doreau B (2001) Cereal supplementation modified the fibrolytic activity but not the structure of the cellulolytic bacterial community associated with rumen solid digesta. Reprod Nutr Dev 41:413–424PubMedCrossRefGoogle Scholar
  22. McDougall EI (1948) Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J 43:99–109Google Scholar
  23. Michalowski T (2005) The distribution of fibrolytic activity in the rumen of ciliate-free and faunated sheep. Journal of Animal and Feed Sciences 14:287–290Google Scholar
  24. Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 2:127–132CrossRefGoogle Scholar
  25. Milton K, Demment MW (1988) Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J Nutr 118:1082–1088PubMedGoogle Scholar
  26. Pomajbíková K, Petrželková KJ, Profousová I, Petrášová J, Kišidayová S, Váradyová Z, Modrý D (2010) A survey of entodiniomorphid ciliates in chimpanzees and bonobos. Am J Phys Anthropol 142:42–48PubMedGoogle Scholar
  27. Schmidt DA, Dempsey JL, Kerley MS, Porton IJ (2000) Fiber in ape diet: a review, in Proc. of “The Apes: Challenges for the 21st Century”, pp 177–179Google Scholar
  28. Senaud J, Bohatier J, Grain J (1986) Comparisons du comportement alimentaire de 2 protozoires ciliés du rumen, Epidinium ecaudatum and Polyplastron multivesiculatum: méchanismes d'ingestion et de digestion. Reprod Nutr Dev 26:306Google Scholar
  29. Strelkov AA (1939) Parasitic infusoria from the intestine of Ungulata belonging to the family Equidae. Sci Trans (Uchen Zap) 17:1–262Google Scholar
  30. Tokiwa T, Modrý D, Ito A, Pomajbíková K, Petrželková KJ, Imai S (2010) A new Entodiniomorphid ciliate, Troglocorys cava n.g., n.sp., from the Wild Eastern Chimpanzee (Pan troglodytes schweinfurthii) from Uganda. J Eukaryot Microbiol 57:115–120PubMedCrossRefGoogle Scholar
  31. Whitelaw FG, Eadie JM, Mann SO, Reid RS (1972) Some effects of rumen ciliate protozoa in cattle given restricted amounts of a barley diet. Br J Nutr 27:425–437PubMedCrossRefGoogle Scholar
  32. Williams AG, Coleman GS (1992) The rumen protozoa. Springer-Verlag New York Inc., New YorkGoogle Scholar
  33. Williams AG, Ellis AB, Coleman GS (1986) Subcellular distribution of polysaccharide depolymerase and glycoside hydrolase enzymes in rumen ciliate protozoa. Curr Microbiol 13:139–147CrossRefGoogle Scholar
  34. Williams AG, Withers SE (1991) Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. J Appl Bacteriol 70:144–155PubMedGoogle Scholar
  35. Williams AG, Coleman GS (1985) Hemicellulose-degrading enzymes in rumen ciliate protozoa. Curr Microbiol (Historical Archive) 12:85–90CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2011

Authors and Affiliations

  • I. Profousová
    • 1
    • 2
  • K. Mihaliková
    • 3
  • T. Laho
    • 3
  • Z. Váradyová
    • 3
  • K. J. Petrželková
    • 2
    • 4
  • D. Modrý
    • 1
    • 5
  • S. Kišidayová
    • 3
    Email author
  1. 1.Department of ParasitologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  2. 2.Institute of Vertebrate Biology, Academy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Institute of Animal Physiology, Slovak Academy of SciencesKošiceSlovak Republic
  4. 4.Liberec ZooLiberecCzech Republic
  5. 5.Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech RepublicCeske BudejoviceCzech Republic

Personalised recommendations