Folia Microbiologica

, Volume 55, Issue 6, pp 621–624 | Cite as

Microbial phytase-induced calcium-phosphate precipitation — a potential soil stabilization method

  • G. Roeselers
  • M. C. M. Van Loosdrecht


Two hypotheses were tested: (1) microbial dephosphorylation of phytate in the presence of Ca2+ ions will result in the precipitation of hydroxyapatite-like crystals and (2) precipitation of calcium-phosphate crystals on and between sand-like particles can cause cementation. A growing culture of the dimorphic phytase-active yeast Arxula adeninivorans was introduced into a column filled with quartz particles and subsequently a liquid growth medium amended with calcium phytate was pumped through the column resulting in increased strength and stiffness of the quartz particle matrix. Environmental scanning electron microscope analysis combined with energy-dispersive X-ray measurement revealed cementation of the quartz particles by calcium-phosphate crystals. This microbial mineralization process could provide a novel approach to improving the mechanical properties like strength and stiffness of sandy soils.


Quartz Particle Calcium Hydroxyapatite Monetite Liquid Growth Medium Calcium Phytate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Arxula adeninivorans


calcium phytate


Centraalbureau voor Schimmelcultures


energy dispersive X-ray (analysis)


environmental scanning electron microscope


Yeast Nitrogen Base


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belzer C., Kusters J.G., Kuipers E.J., VAN Vliet A.H.: Urease induced calcium precipitation by Helicobacter species may initiate gallstone formation. Gut55, 1678–1679 (2006).CrossRefPubMedGoogle Scholar
  2. Boquet E., Boronat A., Ramoscor A.: Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature246, 527–529 (1973).CrossRefGoogle Scholar
  3. Canaveras J.C., Cuezva S., Sanchez-Moral S., Lario J., Laiz L., Gonzalez J.M., Saiz-Jimenez C.: On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften93, 27–32 (2006).CrossRefPubMedGoogle Scholar
  4. Cosgrove D.J.: Chemistry and biochemistry of inositol polyphosphates. Rev.Pure Appl.Chem.16, 209 (1966).Google Scholar
  5. Dejong J.T., Fritzges M.B., Nusslein K.: Microbially induced cementation to control sand response to undrained shear. J.Geotech. Geoenviron.Eng.132, 1381–1392 (2006).CrossRefGoogle Scholar
  6. Ivanov V., Chu J.: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev.Environ.Sci.Biotechnol.7, 139–153 (2008).CrossRefGoogle Scholar
  7. Jack T.R.: Microbial enhancement of oil-recovery. Curr.Opin.Biotechnol.2, 444–449 (1991).CrossRefGoogle Scholar
  8. Kremer B., Kazmierczak J., Stal L.J.: Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology6, 46–56 (2008).PubMedGoogle Scholar
  9. Lambrechts C., Boze H., Moulin G., Galzy P.: Utilization of phytate by some yeasts. Biotechnol.Lett.14, 61–66 (1992).CrossRefGoogle Scholar
  10. Lassen S.F., Breinholt J., Ostergaard P.R., Brugger R., Bischoff A., Wyss M., Fuglsang C.C.: Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl.Environ.Microbiol.67, 4701–4707 (2001).CrossRefPubMedGoogle Scholar
  11. Lim B.L., Yeung P., Cheng C., Hill J.E.: Distribution and diversity of phytate-mineralizing bacteria. ISME J.1, 321–330 (2007).PubMedGoogle Scholar
  12. Mullaney E.J., Daly C.B., Ullah A.H.: Advances in phytase research. Adv.Appl.Microbiol.47, 157–199 (2000).CrossRefPubMedGoogle Scholar
  13. Sano K., Fukuhara H., Nakamura Y.: Phytase of the yeast Arxula adeninivorans. Biotechnol.Lett.21, 33–38 (1999).CrossRefGoogle Scholar
  14. Schmittner K.E., Giresse P.: Micro-environmental controls on biomineralization: superficial processes of apatite and calcite precipitation in Quaternary soils, Roussillon, France. Sedimentology46, 463–476 (1999).CrossRefGoogle Scholar
  15. Thomson B.M., Smith C.L., Busch R.D., Siegel M.D., Baldwin C.: Removal of metals and radionuclides using apatite and other natural sorbents. J.Environ.Eng.129, 492–499 (2003).CrossRefGoogle Scholar
  16. Whiffin V.S., VAN Paassen L.A., Harkes M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol.J.24, 417–423 (2007).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.Biological Laboratory 4081Harvard UniversityCambridgeUSA

Personalised recommendations