Folia Microbiologica

, Volume 55, Issue 6, pp 559–568 | Cite as

Point-of-care salivary microbial tests for detection of cariogenic species — Clinical relevance thereof — review

  • E. Lenčová
  • Z. Broukal
  • J. Spížek


Dental caries is a highly prevalent multifactorial disease that can result in serious health impairment. It was shown that oral bacteria play a significant role in caries development. Point-of-care (POC) salivary microbial tests for detection of cariogenic species have been investigated as a potential tool for caries risk assessment. This review aims to evaluate clinical relevance of these tests in the light of recent scientific evidence. Methodology involved PubMed search using key words salivary microbial tests, cariogenic bacteria and caries risk prediction. Articles obtained by the search were cross-referenced to obtain further sources. Specificity and negative-predictive value of these tests are higher than their sensitivity and positive value. Predictive power of the POC salivary microbial tests as a single predictor is generally weak, although it increases when included in multifactorial models for caries prediction. Literature findings support the use of these tests for screening of at-risk individuals in a population of young preschool children without visible caries and for motivation of subjects on individual level. POC salivary microbial tests are simple and inexpensive and, therefore, may be advantageous from public health perspective.


Lactobacillus Dental Caries Dental Plaque Streptococcus Mutans Early Childhood Caries 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



polymerase chain reaction




random amplified polymorphic DNA


Streptococcus mutans


transduction system(s)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas J., Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E.: Defining the normal bacterial flora of the oral cavity. J.Clin.Microbiol.43, 5721–5732 (2005).PubMedCrossRefGoogle Scholar
  2. Al-Ahmad A., Roth D., Wolkewitz M., Wiedmann-al-Ahmad M., Follo M., Ratka-Krüger P., Deimling D., Hellwig E., Hannig C.: Change in diet and oral hygiene over an 8-week period: effects on oral health and oral biofilm. Clin.Oral Investig. [Epub ahead of print] July 22 (2009).Google Scholar
  3. Alaluusua S.: Streptococcus mutans establishment and changes in salivary IgA in young children with reference to dental caries. Longitudinal studies and studies on associated methods. Proc.Finn.Dent.Soc.79, 1–55 (1983).PubMedGoogle Scholar
  4. Alaluusua S., Savolainen J., Tuompo H., Grönroos L.: Slide-scoring method for estimation of Streptococcus mutans levels in saliva. Scand.J.Dent.Res.92, 127–133 (1984).PubMedGoogle Scholar
  5. Anusavice K.J.: Present and future approaches for the control of caries. J.Dent.Educ.69, 538–554 (2005).PubMedGoogle Scholar
  6. Bader J.D., Graves R.C., Disney J.A., Bohannan H.M., Stamm J.W., Abernathy J.R., Lindahl R.L.: Identifying children who will experience high caries increments. Community Dent.Oral Epidemiol.14, 198–201 (1986).PubMedCrossRefGoogle Scholar
  7. Badet C., Thebaud N.B.: Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol.J.2, 38–48 (2008).PubMedCrossRefGoogle Scholar
  8. Badet M.C., Richard B., Dorignac G.: An in vitro study of the pH lowering potential of salivary lactobacilli associated with dental caries. J.Appl.Microbiol.90, 1015–1018 (2001).PubMedCrossRefGoogle Scholar
  9. Baehni P.C., Guggenheim B.: Potential of diagnostic microbiology for treatment and prognosis of dental caries and periodontal diseases. Crit.Rev. Oral Biol.Med.7, 259–277 (1996).PubMedCrossRefGoogle Scholar
  10. Balakrishnan M., Simmonds R.S., Kilian M., Tagg J.R.: Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J.Med.Microbiol.51, 941–948 (2002).PubMedGoogle Scholar
  11. Barrett J.F., Hoch J.A.: Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob.Agents Chemother.42, 1529–1536 (1998).PubMedGoogle Scholar
  12. Beck J.D.: Identification of risk factors, pp. 8–13 in J.D. Bader (Ed.): Risk Assessment in Dentistry. University of North Carolina Dental Ecology, Chapel Hill (NC, USA) 1990.Google Scholar
  13. Beighton D., Brailsford S., Samaranayake L.P., Brown J.P., Ping F.X., Grant-Mills D., Harris R., Lo E.C., Naidoo S., Ramos-Gomez F., Soo T.C., Burnside G., Pine C.M.: A multi-country comparison of caries-associated microflora in demographically diverse children. Community Dent.Health21, 96–101 (2004).PubMedGoogle Scholar
  14. Bender G.R., Sutton S.V., Marquis R.E.: Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect.Immun.53, 331–338 (1986).PubMedGoogle Scholar
  15. Biswas I., Drake L., Erkina D., Biswas S.: Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans. J.Bacteriol.190, 68–77 (2008).PubMedCrossRefGoogle Scholar
  16. Bowen W.H.: Dental caries in monkeys. Adv.Oral Biol.3, 185–216 (1968).PubMedGoogle Scholar
  17. Bratthall D., Hänsel Petersson G.: Cariogram — a multifactorial risk assessment model for a multifactorial disease. Community Dent.Oral Epidemiol.33, 256–264 (2005).PubMedCrossRefGoogle Scholar
  18. Byun R., Nadkarni M.A., Chhour K.L., Martin F.E., Jacques N.A., Hunter N.: Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J.Clin.Microbiol.42, 3128–3136 (2004).PubMedCrossRefGoogle Scholar
  19. Del Carmen Ahumada M., Bru E., Colloca M.E., Lopez M.E., Nader-Macias M.E.: Lactobacilli isolation from dental plaque and saliva of a group of patients with caries and characterization of their surface properties. Anaerobe7, 71–77 (2001).CrossRefGoogle Scholar
  20. Chia J.S., Lee Y.Y., Huang P.T., Chen J.Y.: Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect.Immun.69, 2493–2501 (2001).PubMedCrossRefGoogle Scholar
  21. Collins M.D., Rodrigues U., Ash C., Aguirre M., Farrow J.A.E., Martinez-Murcia A., Phillips B.A., Williams A.M., Wallbanks S.: Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol.Lett.77, 5–12 (1991).CrossRefGoogle Scholar
  22. Costerton J.W., Lewandowski Z., Debeer D., Caldwell D., Korber D., James G.: Biofilms, the customized microniche. J.Bacteriol.176, 2137–2142 (1994).PubMedGoogle Scholar
  23. Coykendall A.L.: Classification and identification of the viridans streptococci. Clin.Microbiol.Rev.2, 315–328 (1989).PubMedGoogle Scholar
  24. Cvitkovitch D.G.: Genetic competence and transformation in oral streptotocci. Crit.Rev.Oral Biol.Med.12, 217–243 (2001).PubMedCrossRefGoogle Scholar
  25. Diaz P., Chalmers N.I., Rickard A.H., Kong C., Milburn C.L., Palmer R.J. Jr., Kolenbrander P.E.: Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl.Environ.Microbiol.72, 2837–2848 (2006).PubMedCrossRefGoogle Scholar
  26. Dige I., Raarup M.K., Nyengaard J.R., Kilian M., Nyvad B.: Actinomyces naeslundii in initial dental biofilm formation. Microbiology155, 2116–2126 (2009).PubMedCrossRefGoogle Scholar
  27. Eckert R., He J., Yarbrough D.K., Qi F., Anderson M.H., Shi W.: Targeted killing of Streptococcus mutans by a pheromone-guided smart antimicrobial peptide. Antimicrob.Agents Chemother.50, 3651–3657 (2006).PubMedCrossRefGoogle Scholar
  28. Facklam R.: What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin.Microbiol.Rev.15, 613–630 (2002).PubMedCrossRefGoogle Scholar
  29. Featherstone J.D., Adair S.M., Anderson M.H., Berkowitz R.J., Bird W.F., Crall J.J., Den Besten P.K., Donly K.J., Glassman P., Milgrom P., Roth J.R., Snow R., Stewart R.E.: Caries management by risk assessment: consensus statement. J.Calif.Dent.Assoc.31, 257–269 (2003).PubMedGoogle Scholar
  30. Filoche S.K., Soma K.J., Sissons Ch.: Caries-related plaque microcosm biofilms developed in microplates. Oral Microbiol.Immunol.22, 73–79 (2007).PubMedCrossRefGoogle Scholar
  31. Fitzgerald R.J., Keyes P.H.: Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J.Am.Dent. Assoc.61, 9–19 (1960).PubMedGoogle Scholar
  32. Fitzgerald R.J., Fitzgerald D.B., Adams B.O., Duany L.F.: Cariogenicity of human oral lactobacilli in hamsters. J.Dent.Res.59, 832–837 (1980).PubMedCrossRefGoogle Scholar
  33. Fure S.: A ten-year cross-sectional and follow-up study of salivary flow rates and mutans streptococci and lactobacillus counts in elderly Swedish individuals. Oral Health Prev.Dent.1, 185–194 (2003).PubMedGoogle Scholar
  34. Gabre P., Martinsson T., Gahnberg L.: Simplified sampling methods for estimating levels of lactobacilli in saliva in dental clinical practice. Acta Odontol.Scand.57, 181–184 (1999).PubMedCrossRefGoogle Scholar
  35. Gold W., Preston F.B., Blechman H.: The nature and amounts of bound glucose in dental plaque. J.Periodontol.44, 263–268 (1973).PubMedGoogle Scholar
  36. Harris G.S., Michalek S.M., Curtiss R.: Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. Infect.Immun.60, 3175–3185 (1992).PubMedGoogle Scholar
  37. Hillman J.D., Socransky S.S.: Replacement therapy of the prevention of dental disease. Adv.Dent.Res.1, 119–125 (1987).PubMedGoogle Scholar
  38. Hillman J.D., Brooks T.A., Michalek S.M., Harmon C.C., Snoep J.L., VAN DER Weijden C.C.: Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect.Immun.68, 543–549 (2000).PubMedCrossRefGoogle Scholar
  39. Hoch J.A.: Two-component and phosphorelay signal transduction. Curr.Opin.Microbiol3, 165–170 (2000).PubMedCrossRefGoogle Scholar
  40. Holbrook W.P., DE Soet J.J., DE Graaff J.: Prediction of dental caries in pre-school children. Caries Res.27, 424–430 (1993).PubMedCrossRefGoogle Scholar
  41. van Houte J., Gibbons R.J., Pulkkinen A.J.: Ecology of human oral lactobacilli. Infect.Immun.6, 723–729 (1972).PubMedGoogle Scholar
  42. van Houte J.: Role of microorganisms in caries etiology. J.Dent.Res.73, 672–681 (1994).PubMedGoogle Scholar
  43. Janatová T., Najmanová L., Neubauerová L., Kyselková M., Novotná G., Spížek J., Janata J., Dušková J.: Changes in the incidence of periodontal pathogens during long-term monitoring and after application of antibacterial drugs. Folia Microbiol.54, 429–436 (2009).CrossRefGoogle Scholar
  44. Jentsch H., Buchmann W., Pienih-Kkinen K., Tiekso J., Scheinin A., Beetke E.: The assessment of the caries risk in young adults. Dtsch.Zahn Mund Kieferheilkd.Zbl.80, 227–230 (1992).Google Scholar
  45. Jordan H.V., Hammond B.F.: Filamentous bacteria isolated from human root surface caries. Arch.Oral Biol.17, 1333–1342 (1972).PubMedCrossRefGoogle Scholar
  46. Keyes P.H.: The infections and transmissible nature of experimental dental caries: findings and implications. Arch.Oral Biol.1, 304–310 (1960).PubMedCrossRefGoogle Scholar
  47. Kishi M., Abe A., Kishi K., Ohara-Nemoto Y., Kimura S., Yonemitsu M.: Relationship of quantitative salivary levels of Streptococcus mutans and S. sobrinus in mothers to caries status and colonization of mutans streptococci in plaque in their 2.5-yearold children. Community Dent.Oral Epidemiol.37, 241–249 (2009).PubMedCrossRefGoogle Scholar
  48. Kleinberg I.: A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit.Rev.Oral Biol.Med.13, 108–125 (2002).PubMedCrossRefGoogle Scholar
  49. Klinke T., Kneist S., De Soet J.J., Kuhlisch E., Mauersberger S., Forster A., Klimm W.: Acid production by oral strains of Candida albicans and lactobacilli. Caries Res.43, 83–91 (2009).PubMedCrossRefGoogle Scholar
  50. Köhler B., Andreen I., Jonsson B.: The effect of caries-preventive measures in mothers on dental caries and the oral presence of the bacteria Streptococcus mutans and lactobacilli in their children. Arch.Oral Biol.29, 879–883 (1984).PubMedCrossRefGoogle Scholar
  51. Krasse B.: Biological factors as indicators of future caries. Internat.Dent.J.38, 219–225 (1988).Google Scholar
  52. Kuramitsu H.K., He X., Lux R., Anderson M.H., Shi W.: Interspecies interactions within oral microbial communities. Microbiol. Mol.Biol.Rev.71, 653–670 (2007).PubMedCrossRefGoogle Scholar
  53. Lang N.P., Hotz P.R., Gusberti F.A., Joss A.: Longitudinal clinical and microbiological study on the relationship between infection with Streptococcus mutans and the development of caries in humans. Oral Microbiol.Immunol.2, 39–47 (1987).PubMedCrossRefGoogle Scholar
  54. Larmas M.: A new dip-slide method for the counting of salivary lactobacilli. Proc.Finn.Dent.Soc.71, 31–35 (1975).PubMedGoogle Scholar
  55. Leverett D.H., Proskin H.M., Featherstone J.D., Adair S.M., Eisenberg A.D., Mundorff-Shrestha S.A., Shields C.P., Shaffer C.L., Billings R.J.: Caries risk assessment in a longitudinal discrimination study. J.Dent.Res.72, 538–543 (1993).PubMedCrossRefGoogle Scholar
  56. Li Y., Caulfield P.W.: The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J.Dent.Res.74, 681–685 (1995).PubMedCrossRefGoogle Scholar
  57. Lindquist B., Emilson C.G.: Colonization of Streptococcus mutans and Streptococcus sobrinus genotypes and caries development in children to mothers harboring both species. Caries Res.38, 95–103 (2004).PubMedCrossRefGoogle Scholar
  58. Loesche W.J.: Chemotherapy of dental plaque infections. Oral Sci.Rev.9, 63–107 (1976).Google Scholar
  59. Loesche W.J., Straffon L.H.: Longitudinal investigation of the role of Streptococcus mutans in human fissure decay. Infect.Immun.26, 498–507 (1979).PubMedGoogle Scholar
  60. Loesche W.J.: Role of Streptococcus mutans in human dental decay. Microbiol.Rev.50, 353–380 (1986).PubMedGoogle Scholar
  61. Loesche W.J., Rowan J., Straffon L.H., Loos P.J.: Association of Streptococcus mutants with human dental decay. Infect.Immun.11, 1252–1260 (1975).PubMedGoogle Scholar
  62. Lorenz M.G., Wackernagel W.: Bacterial gene transfer by natural genetic transformation in the environment. Microbiol.Rev.58, 563–602 (1994).PubMedGoogle Scholar
  63. Love R.M., Jenkinson H.F.: Invasion of dentinal tubules by oral bacteria. Crit.Rev.Oral Biol.Med.13, 171–183 (2002).PubMedCrossRefGoogle Scholar
  64. De Man J.D., Rogosa M., Sharpe M.E.: A medium for the cultivation of lactobacilli. J.Appl.Bact.23, 130–135 (1960).Google Scholar
  65. Marchant S., Brailsford S.R., Twomey A.C., Roberts G.J., Beighton D.: The predominant microflora of nursing caries lesions. Caries Res.35, 397–406 (2001).PubMedCrossRefGoogle Scholar
  66. Marsh P.D.: Microbial ecology of dental plaque and its significance in health and disease. Adv.Dent.Res.8, 263–271 (1994).PubMedGoogle Scholar
  67. Marsh P.D.: Are dental diseases examples of ecological catastrophes? Microbiology149, 279–294 (2003).PubMedCrossRefGoogle Scholar
  68. Marsh P.D.: Dental plaque as a biofilm and a microbial community -implications for health and disease. BMC Oral Health15, 1–14 (2006).Google Scholar
  69. Martin F.E., Nadkarni M.A., Jacques N.A., Hunter N.: Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J.Clin.Microbiol.40, 1698–1704 (2002).PubMedCrossRefGoogle Scholar
  70. Matee M.I., Mikx F.H., Maselle S.Y., Van Palenstein Helderman W.H.: Mutans streptococci and lactobacilli in breast-fed children with rampant caries. Caries Res.26, 183–187 (1992).PubMedCrossRefGoogle Scholar
  71. Michalek S.M., Hirasawa M., Kiyono H., Ochiai K., Mcghee J.R.: Oral ecology and virulence of Lactobacillus casei and Streptococcus mutans in gnotobiotic rats. Infect.Immun.33, 690–696 (1981).PubMedGoogle Scholar
  72. Mikx F.H.: Microbiological tests of patients at risk. Ned.Tijdschr.Tandheelkd.98, 14–17 (1991).PubMedGoogle Scholar
  73. Nakano K., Nomura R., Nemoto H., Mukai T., Yoshioka H., Shudo Y., Hata H., Toda K., Taniguchi K., Amano A., Ooshima T.: Detection of novel serotype k Streptococcus mutans in infective endocarditis patients. J.Med.Microbiol.56, 1413–1415 (2007).PubMedCrossRefGoogle Scholar
  74. Nancy J., Dorignac G.: Lactobacilli from the dentin and saliva in children. J.Clin.Pediat.Dent.16, 107–111 (1992).Google Scholar
  75. Nemoto H., Nakano K., Nomura R., Ooshima T.: Molecular characterization of Streptococcus mutans strains isolated from the heart valve of an infective endocarditis patient. J.Med.Microbiol.57, 891–895 (2008).PubMedCrossRefGoogle Scholar
  76. Nishikawara F., Nomura Y., Imai S., Senda A., Hanada N.: Evaluation of cariogenic bacteria. Eur.J.Dent.1, 31–39 (2007).PubMedGoogle Scholar
  77. Nyvad B., Kilian M.: Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand.J.Dent.Res.95, 369–380 (1987).PubMedGoogle Scholar
  78. Nyvad B., Kilian M.: Microflora associated with experimental root surface caries in humans. Infect.Immun.58, 1628–1633 (1990).PubMedGoogle Scholar
  79. Ollila P.S., Larmas M.A.: Long-term predictive value of salivary microbial diagnostic tests in children. Eur.Arch.Paediatr.Dent.9, 25–30 (2008).PubMedGoogle Scholar
  80. Orland F.J., Blayney J.R., Harrison R.W., Reyniers J.A., Trexler P.C., Wagner M., Gordon H.A., Luckey T.D.: Use of the germfree animal technique in the study of experimental dental caries. I. Basic observations on rats reared free of all microorganisms. J.Dent.Res.33, 147–174 (1954).PubMedCrossRefGoogle Scholar
  81. VAN Palenstein Helderman W.H., Matee M.I., VAN Der Hoeve J.S., Mikx F.H.: Cariogenicity depends more on diet than the prevailing mutans streptococcal species. J.Dent.Res. 75, 535–545 (1996).PubMedCrossRefGoogle Scholar
  82. VAN Palenstein Helderman W.H., Mikx F.H., VAN’T Hof M.A., Truin G., Kalsbeek H.: The value of salivary bacterial counts as a supplement to past caries experience as caries predictor in children. Eur.J.Oral Sci. 109, 312–315 (2001).PubMedCrossRefGoogle Scholar
  83. Perch B., Kjems E., Ravn T.: Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol.Microbiol.Scand.82, 357–370 (1974).Google Scholar
  84. Pienihäkkinen K.: Salivary lactobacilli and yeasts in relation to caries increment. Annually repeated measurements versus a single determination. Acta Odontol.Scand.46, 57–62 (1988).PubMedCrossRefGoogle Scholar
  85. Pienihäkkinen K., Jokela J.: Clinical outcomes of risk-based caries prevention in preschool-aged children. Community Dent.Oral Epidemiol.30, 143–150 (2002).PubMedCrossRefGoogle Scholar
  86. Pienihäkkinen K., Scheinin A., Bánóczy J.: Screening of caries in children through salivary lactobacilli and yeasts. Scand.J.Dent. Res.95, 397–404 (1987).PubMedGoogle Scholar
  87. Preza D., Olsen I., Willumsen T., Boches S.K., Cotton S.L., Grinde B., Paster B.J.: Microarray analysis of the microflora of root caries in elderly. Eur.J.Clin.Microbiol.Infect.Dis.28, 509–517 (2009).PubMedCrossRefGoogle Scholar
  88. Quiñonez R.B., Keels M.A., Vann W.F. Jr., Mciver F.T., Heller K., Whitt J.K.: Early childhood caries: analysis of psychosocial and biological factors in a high-risk population. Caries Res.35, 376–383 (2001).PubMedCrossRefGoogle Scholar
  89. Raitio M., Pienih-Kkinen K., Scheinin A.: Assessment of single risk indicators in relation to caries increment in adolescents. Acta Odontol.Scand.54, 113–117 (1996).PubMedCrossRefGoogle Scholar
  90. Rosen S., Lenney W.S., O’Malley J.E.: Dental caries in gnotobiotic rats inoculated with Lactobacillus casei. J.Dent.Res.47, 358–363 (1968).PubMedCrossRefGoogle Scholar
  91. Sato Y., Yamamoto Y., Kizaki H.: Cloning and sequence analysis of the gbpC gene encoding a novel glucan-binding protein of Streptococcus mutans. Infect.Immun.65, 668–675 (1997).PubMedGoogle Scholar
  92. Schaeken M.J., Creugers T.J., VAN Der Hoeven J.S.: Relationship between dental plaque indices and bacteria in dental plaque and those in saliva. J.Dent.Res.66, 1499–1502 (1987).PubMedCrossRefGoogle Scholar
  93. Scheie A.A., Petersen F.C.: The biofilm concept: consequences for future prophylaxis of oral diseases? Crit.Rev.Oral Biol.Med.15, 4–12 (2004).PubMedCrossRefGoogle Scholar
  94. Scheinin A., Pienih-Kkinen K., Tiekso J., Holmberg S., Fukuda M., Suzuki A.: A multifactorial modeling for root caries prediction: 3-year follow-up results. Community Dent.Oral Epidemiol.22, 126–129 (1994).PubMedCrossRefGoogle Scholar
  95. Schüpbach P., Osterwalder V., Guggenheim B.: Human root caries: microbiota in plaque covering sound, carious and arrested carious root surfaces. Caries Res.29, 382–395 (1995).PubMedCrossRefGoogle Scholar
  96. Shi S., Zhao Y., Hayashi Y., Yakushiji M., Machida Y.: A study of the relationship between caries activity and the status of dental caries: application of the Dentocult LB method. Chin.J.Dent.Res.2, 34–37 (1999).PubMedGoogle Scholar
  97. Signoretto C., Burlacchini G., Faccioni F., Zanderigo M., Bozzola N., Canepari P.: Support for the role of Candida spp. in extensive caries lesions of children. New Microbiol.32, 101–107 (2009).PubMedGoogle Scholar
  98. Sims W.: Streptococcus mutans and vaccines for dental caries: a personal commentary and critique. Community Dent.Health2, 129–147 (1985).PubMedGoogle Scholar
  99. Smith D.J.: Dental caries vaccines: prospects and concerns. Crit.Rev.Oral Biol.Med.13, 335–349 (2002).PubMedCrossRefGoogle Scholar
  100. Socransky S.S., Haffajee A.D., Smith C., Martin L., Haffajee J.A., Uzel N.G., Goodson J.M.: Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystems. Oral Microbiol.Immunol.19, 352–362 (2004).PubMedCrossRefGoogle Scholar
  101. Splieth C., Bernhardt O.: Prediction of caries development for molar fissures with semiquantitative mutans streptococci test. Eur. J.Oral Sci.107, 164–169 (1999).PubMedCrossRefGoogle Scholar
  102. Straetemans M.M., VAN Loveren C., DE Soet J.J., DE Graaff J., TEN Cate J.M.: Colonization with mutans streptococci and lactobacilli and the caries experience of children after the age of five. J.Dent.Res.77, 1851–1855 (1998).PubMedCrossRefGoogle Scholar
  103. Sumney D.L., Jordan H.V.: Characterization of bacteria isolated from human root surface carious lesions. J.Dent.Res.53, 343–351 (1974).PubMedCrossRefGoogle Scholar
  104. Švec P., Sedláček I., Žáčková L., Nováková D., Kukletová M.: Lactobacillus spp. associated with early childhood caries. Folia Microbiol.54, 53–58 (2009).CrossRefGoogle Scholar
  105. Svensater G., Larsson U.B., Greif E.C., Cvitkovitch D.G., Hamilton I.R.: Acid tolerance response and survival by oral bacteria. Oral Microbiol.Immunol.12, 266–273 (1997).PubMedCrossRefGoogle Scholar
  106. Takahashi N., Nyvad B.: Caries ecology revisited: microbial dynamics and the caries process. Caries Res.42, 409–418 (2008).PubMedCrossRefGoogle Scholar
  107. Tamaki Y., Nomura Y., Katsumura S., Okada A., Yamada H., Tsuge S., Kadoma Y., Hanada N.: Construction of a dental caries prediction model by data mining. J.Oral Sci.51, 61–68 (2009).PubMedCrossRefGoogle Scholar
  108. Tanzer J.M., Thompson A., Wen Z.T., Burne R.A.: Streptococcus mutans: fructose transport, xylitol resistance, and virulence. J.Dent.Res.85, 369–373 (2006).PubMedCrossRefGoogle Scholar
  109. Thenisch N.L., Bachmann L.M., Imfeld T., Leisebach Minder T., Steurer J.: Are mutans streptococci detected in preschool children a reliable predictive factor for dental caries risk? A systematic review. Caries Res.40, 366–374 (2006).PubMedCrossRefGoogle Scholar
  110. Thibodeau E.A., O’sullivan D.M.: Salivary mutans streptococci and caries development in the primary and mixed dentitions of children. Community Dent.Oral Epidemiol.27, 406–412 (1999).PubMedCrossRefGoogle Scholar
  111. Todar K.: Todar’s Online Textbook of Bacteriology [online] (2008), available from, accessed on 4 October 2009.
  112. Truong T.L., Ménard C., Mouton C., Trahan L.: Identification of mutans and other oral streptococci by random amplified polymorphic DNA analysis. J.Med.Microbiol.49, 63–71 (2000).PubMedGoogle Scholar
  113. Twetman S., Johansson I., Birkhed D., Nederfors T.: Caries incidence in young type 1 diabetes mellitus patients in relation to metabolic control and caries-associated risk factors. Caries Res.36, 31–35 (2002).PubMedCrossRefGoogle Scholar
  114. Vågstrand K.E., Karin Lindroos A., Birkhed D., Linné Y.: Associations between salivary bacteria and reported sugar intake and their relationship with body mass index in women and their adolescent children. Public Health Nutr.11, 341–348 (2008).PubMedCrossRefGoogle Scholar
  115. Vågstrand K.E., Birkhed D.: Cariogenic bacteria as biomarkers for sugar intake. Nutr.Rev.65, 111–121 (2007).PubMedCrossRefGoogle Scholar
  116. Whiley R.A., Beighton D.: Current classification of the oral streptococci. Oral Microbiol.Immunol.13, 195–216 (1998).PubMedCrossRefGoogle Scholar
  117. Zhang Q., Bian Z., Fan M., VAN Palenstein Helderman W.H.: Salivary mutans streptococci counts as indicators in caries risk assessment in 6–7-year-old Chinese children. J.Dent.Educ.35, 177–180 (2007).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  1. 1.Institute of Dental Research, 1st Faculty of MedicineCharles University, and General Teaching Hospital in PraguePragueCzech Republic
  2. 2.Institute of Microbiology, v.v.i.Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations