Folia Microbiologica

, Volume 55, Issue 6, pp 535–547 | Cite as

Chromobacterium violaceum and its important metabolites — review

  • M. Durán
  • A. Faljoni-Alario
  • N. Durán


C. violaceum appeared as important bacterium in different applications and mainly these aspects are related to the production of violacein. This review discusses the last reports on biosynthetic pathways, production, genetic aspects, biological activities, pathological effects, antipathogenic screening through quorum sensing, environmental effects and the products of C. violaceum with industrial interest. An important discussion is on biological applications in medicine and as industrial products such as textile and in cosmetics.


HL60 Cell FK228 Triclosan Violacein Depsipeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



colorectal cancer


Food and Drug Administration (FDA or USFDA), an agency of the United States Department of Health and Human Services




quorum sensing




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmetagic A., Pemberton J.M.: Stable high level expression of the violacein indolocarbazole anti-tumour gene cluster and the Streptomyces lividans amyA gene in E. coli K12. Plasmid63, 79–85 (2010).CrossRefPubMedGoogle Scholar
  2. Ajithdoss D.K., Porter B.F., Calise D.V., Libal M.C., Edwards J.F.: Septicemia in a neonatal calf associated with Chromobacterium violaceum. Veter.Pathol.46, 71–74 (2009).CrossRefGoogle Scholar
  3. Al-Hussaini R., Mahasneh A.M.: Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules14, 3425–3435 (2009).CrossRefPubMedGoogle Scholar
  4. Alves O.L., Gimenez I.F., DE Azevedo M.M.M., Durán N., Melo P.S.: Phamacological use of cyclodextrine-Au-thiol-derivative/hydrophobic compound nanoparticles as antitumoral, antibacterial, antiviral and/or antiparasites, its obtention process and formulation. Brazil.Pat. PIBr 0502657-1 (2005).Google Scholar
  5. Anah M.U., Udo J.J., Ochigbo S.O., Abia-Bassey L.N.: Neonatal septicemia in calabar, Nigeria. Tropical Doctor38, 126–128 (2008).CrossRefPubMedGoogle Scholar
  6. Andrighetti-frohner C.R., Kratz J.M., Antonio R.V., Creczynski-pasa T.B., Barardi C.R.M., Simoes C.M.O.: In vitro testing for genotoxicity of violacein assessed by Comet and Micronucleus assays. Mutat.Res.603, 97–103 (2006).PubMedGoogle Scholar
  7. Antônio R.V., Creczynski-Pasa T.B.: Genetic analysis of violacein biosynthesis by Chromobacterium violaceum. Genet.Mol.Res.3, 85–91 (2004).PubMedGoogle Scholar
  8. Antonisamy P., Kannan P., Ignacimuthu S.: Anti-diarrheal and ulcer-protective effects of violacein isolated from Chromobacterium violaceum in Wistar rats. Fundam.Clin.Pharmacol.23, 483–490 (2009).CrossRefPubMedGoogle Scholar
  9. Aoki S., Nomura T.: Violacein-containing natural bactericides, their manufacture, and cosmetics containing them. Japan Pat. JP 10139612 (1998).Google Scholar
  10. Asamizu S., Kato Y., Igarashia Y., Onaka H.: VioE, a prodeoxyviolacein synthase involved in violacein biosynthesis, is responsible for intramolecular indole rearrangement. Tetrahedron Lett.48, 2923–2926 (2007).CrossRefGoogle Scholar
  11. Baek S.H., Kang H.S., Jang I.H., Lee J.S., Kim S.Y., Baek J.H., Kang J.G., Ahn J.M.: Insecticide and fungicide containing violacein, and their preparation method. Republ.Korean Pat. KR 20070 88150 A (2007).Google Scholar
  12. Baker S., Campbell J.I., Stabler R., Nguyen H.V.M., To D.S., Nguyen D.V., Farrar J.: Fatal wound infection caused by Chromobacterium violaceum in Ho Chi Minh City, Vietnam. J.Clin.Microbiol.46, 3853–3855 (2008).CrossRefPubMedGoogle Scholar
  13. Baldi M., Morales J.A., Hernandez G., Jimenez M., Alfaro A., Arquero-calvo e.: Chromobacterium violaceuminfection in a free-ranging Howler monkey in Costa Rica. J. Wildlife Dis.46, 306–310 (2010).Google Scholar
  14. Balibar C.J., Walsh C.T.: In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA-E from Chromobacterium violaceum. Biochemistry45, 15444–15457 (2006).CrossRefPubMedGoogle Scholar
  15. Barreto E.S., Torres A.R., Barreto M.R., Vasconcelos A.T.R., Astolfi-filho S., Hungria M.: Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. J.Ind.Microbiol.Biotechnol.35, 783–790 (2008).CrossRefPubMedGoogle Scholar
  16. Becker M.H., Brucker R.M., Schwantes C.R., Harris R.N., Minbiole K.P.C.: The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl.Environ.Microbiol.75, 6635–6638 (2009).CrossRefPubMedGoogle Scholar
  17. Bodini S.F., Manfredini S., Epp M., Valentini S., Santori F.: Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett.Appl.Microbiol.49, 551–555 (2009).CrossRefPubMedGoogle Scholar
  18. Bosch F.J., Badenhorst L., Le Roux J.A., Louw V.J.: Successful treatment of Chromobacterium violacelum sepsis in South Africa. J.Med.Microbiol.57, 1293–1295 (2008).CrossRefPubMedGoogle Scholar
  19. Bosgelmez-Tinaz G., Ulusoy S., Ugur A., Ceylan O.: Inhibition of quorum sensing-regulated behaviors by Scorzonera sandrasica. Curr.Microbiol.55, 114–118 (2007).CrossRefPubMedGoogle Scholar
  20. Bowers A.A., Greshock T.J., West N., Schreiber S.L., Wiest O., Williams R.M., Bradner J.E.: Synthesis and conformation-activity relationships of the peptide isosters of FK228 and largazole. J.Am.Chem.Soc.131, 2901–2905 (2009).CrossRefGoogle Scholar
  21. Brandl H., Lehmann S., Faramarzi M.A., Martinelli D.: Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy94, 14–17 (2008).CrossRefGoogle Scholar
  22. Brown A.G.: Discovery and development of new β-lactam antibiotics. Pure Appl.Chem.59, 475–484 (1987).CrossRefGoogle Scholar
  23. Brucker R.M., Harris R.N., Schwantes C.R., Gallaher T.N., Flaherty D.C., Lam B.A., Minbiole K.P.C.: Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J.Chem.Ecol.34, 1422–1429 (2008).CrossRefPubMedGoogle Scholar
  24. Byrd L.C., Marcucci G., Parthun M.R., Xiao J.J., Klisovic R.B., Moran M., Lin T.S., Liu S., Sklenar A.R., Davis M.E., Lucas D.M., Fischer B., Shank R., Tejaswi S.L., Binkley P., Wright J., Chan K.K., Grever M.R.: A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood105, 959–967 (2005).CrossRefPubMedGoogle Scholar
  25. Cao W., Chen W., Sun S., Guo P., Song J., Tian C., Cao W., Chen W., Sun S., Guo P., Song J., Tian C.: Investigating the antioxidant mechanism of violacein by density functional theory method. Investigating the antioxidant mechanism of violacein by density functional theory method. J.Mol.Struct.Theochem.817, 1–4 (2007).CrossRefGoogle Scholar
  26. Carminatti C.A., Oliveira I.L., Recouvreux D.O.S., Antonio R.V., Porto L.M.: Anthranilate synthase subunit organization in Chromobacterium violaceum. Genet.Mol.Res.7, 830–838 (2008).CrossRefPubMedGoogle Scholar
  27. Carter E., Cain K., Rutland B.: Chromobacterium violaceum cellulitis and sepsis following cutaneous marine trauma. Cutis81, 269–272 (2008).PubMedGoogle Scholar
  28. Chen C.N., Chen C.J., Liao C.T., Lee C.Y.: A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acylhomoserine-lactone acylase with quorum-quenching activity. BMC Microbiol.9, 89 doi:10.1186/1471-2180-9-89 (2009).CrossRefPubMedGoogle Scholar
  29. Cooper R., Unger S.: Novel potentiators of β-lactam antibiotics. Structures of SQ 28504 and SQ 28546. J.Org.Chem.51, 3942–3946 (1986).CrossRefGoogle Scholar
  30. Costa F.T.M., Justo G.Z., Duran N., Nogueira P.A., Lopes S.C.P.: Uso da violaceina na forma livre ouencapsulada em sistemas polimericos como antimalárico. Brazil.Pat. PIBr 056399-0 (2005).Google Scholar
  31. de Azevedo M.B.M., Alderete J.B., Rodriguez J.A., DE Souza A.O., Rettori D., Torsoni M.A., Faljoni-alario A., Haun M., Durán N.: Biological activities of violacein: a new antitumoral indole derivative in an inclusion complex with β-cyclodextrin. J.Incl.Phenom.Macrocyclic Chem.37, 93–101 (2000a).CrossRefGoogle Scholar
  32. de Azevedo M.B.M., Melo P.S., Almeida A.B.A., Souza-brito A.R.M., Haun M., Durán N.: Antiulcerogenic activity of violacein/β-cyclodextrin inclusion complexes and violacein. Proc.Intern.Symp.Control.Rel.Bioact.Mater.27, 508–509 (2000b).Google Scholar
  33. de Carvalho D.D., Costa F.T.M., Durán N., Haun M.: Cytotoxic activity of violacein in human colon cancer cells. Toxicol. in Vitro20, 1514–1521 (2006).CrossRefPubMedGoogle Scholar
  34. de Moss R.D.: Violacein. Antibiotics2, 77–81 (1967).Google Scholar
  35. Deines P., Matz C., Jurgens K.: Toxicity of violacein-producing bacteria fed to bacterivorous freshwater plankton. Limnol.Oceanogr.54, 1343–1352 (2009).CrossRefGoogle Scholar
  36. Dessaux Y., Elmerich C., Faure D.: Violacein: a molecule of biological interest originating from the soil-borne bacterium Chromobacterium violaceum. Rev.Med.Internat.25, 659–662 (2004).CrossRefGoogle Scholar
  37. Dobretsov S., Dahms H.U., Huang Yili H., Wahl M., Qian P.Y.: The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol.Ecol.60, 177–188 (2007).CrossRefPubMedGoogle Scholar
  38. Dufosse L.: Microbial production of food grade pigments. Food Technol.Biotechnol.44, 313–321 (2006).Google Scholar
  39. Durán N.: Violacein: an antibiotic discovery. Ciencia Hoje11, 58–80 (1990).Google Scholar
  40. Durán N., DE Azevedo M.M.M.: Compound incorporated in a polymeric nanoparticle with pharmaceutical or a cosmetic, its preparation process and cosmetic or pharmaceutical formulations. Brazil.Pat. PIBr 0404306-5 (2004).Google Scholar
  41. Durán N., DE Souza A.O.: Process of violacein application as antimycobacterial compound. Brazil.Pat. PIBr 0101346-7 (2001).Google Scholar
  42. Durán N., Haun M.: Production, obtention and purification process and antitumoral activity of 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one. Brazil.Pat. PIBr 9702918 (1997).Google Scholar
  43. Durán N., Menck C.F.M.: Chromobacterium violaceum: a review of farmacological and indutrial perspectives. Crit.Rev.Microbiol.27, 201–222 (2001).CrossRefPubMedGoogle Scholar
  44. Durán N., Rettori D., Menck C.F.M.: Who is Chromobacterium violaceum? Biotecnol.Ciên.Desenvol.20, 38–43 (2001).Google Scholar
  45. Durán N., Justo G.Z., Melo P.S., DE Azevedo M.B.M., Souza-Brito A.R.M., Almeida A.B.A., Haun M.: Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with β-cyclodextrin.Can.J.Physiol.Pharmacol.81, 387–396 (2003).CrossRefPubMedGoogle Scholar
  46. Durán N., Justo G.Z., Melo P.S., Martins D. Jr., CORDI L.: Violacein: properties and biological activities. Biotechnol.Appl.Biochem.48, 127–133 (2007).CrossRefPubMedGoogle Scholar
  47. Durán N., Marcato P.D., Alves O.L., DA Silva J.P.S., DE Souza G.I.H., Rodrigues F.A., Espósito E.: Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. J.Nanopart.Res.12, 285–292 (2010).CrossRefGoogle Scholar
  48. Fairbrother L., Shapter J., Brugger J., Southam G., Pring A., Reith F.: Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces. Chem.Geol.265, 313–320 (2009).CrossRefGoogle Scholar
  49. Ferreira C.V., Bos C.L., Versreeg H.H., Justo G.Z., Durán N., Peppelenbosch M.P.: Molecular mechanism of violacein-mediated human promyelocytic leukemia cell-specific cytotoxicity. Blood104, 1459–1464 (2004).CrossRefPubMedGoogle Scholar
  50. Gimenez I.F., Anazetti M.C., Melo P.S., Haun M., De Azevedo M.M.M., Durán N., Alves O.L.: Cytotoxicity on V79 and HL60 cell lines by thiolated-β-cyclodextrin-Au/violacein nanoparticles. J.Biomed.Nanotechnol.1, 352–358 (2005).CrossRefGoogle Scholar
  51. Gootz T.D.: Discovery and development of new antimicrobial agents. Clin.Microbiol.Rev.3, 13–31 (1990).PubMedGoogle Scholar
  52. Gregory A., Ribollet D., Pailla K., Bourgade M., Alma S.: Chromobacterium violaceum septicemia: first case report in the French West Indies. Méd.Malad.Infect.37, 613–615 (2007).CrossRefGoogle Scholar
  53. Greshock T.J., Johns D.M., Noguchi Y., Williams R.M.: Improved total synthesis of the potent HDAC inhibitor FK228 (FR-901228). Org.Lett.10, 613–616 (2008).CrossRefPubMedGoogle Scholar
  54. Guevara A., Salomon M., Oliveros M., Guevara E., Guevara M., Medina Z.: Sepsis caused by pigmented and no pigmented Chromobacterium violaceum. Rev.Chilena Infect.24, 402–406 (2007).Google Scholar
  55. Gupta R., Shah P., Swiatlo E.: Differential gene expression in Streptococcus pneumoniae in response to various iron sources. Microb.Pathogen.47, 101–109 (2009).CrossRefGoogle Scholar
  56. Hakvag S., Fjaervik E., Klinkenberg G., Borgos S.E.F., Josefsen K.D., Ellingsen T.E., Zotchev S.B.: Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trondelag, Norway. Marine Drugs7, 576–588 (2009).CrossRefPubMedGoogle Scholar
  57. Harris R.N., Brucker R.M., Walke J.B., Becker M.H., Schwantes C.R., Flaherty D.C., Lam B.A., Woodhams D.C., Briggs C.J., Vredenburg V.T., Minbiole K.P.C.: Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J.3, 818–824 (2009).CrossRefPubMedGoogle Scholar
  58. Haun M., Pereira M.F., Hoffman M.F., Riveros R., Joyas A., Campos V., Durán N.: Bacterial chemistry — VI. Biological activities and cyto-toxicity of 1,3-dihydro-2H-indol-2-one derivatives. Biol.Res.25, 21 (1992).PubMedGoogle Scholar
  59. Hirano S., Asamizu S., Onaka H., Shiro Y., Nagano S.: Crystal structure of VioE, a key player in the construction of the molecular skeleton of violacein. J.Biol.Chem.283, 6459–6466 (2008).CrossRefPubMedGoogle Scholar
  60. Kato H., Hata T., Shirata A., Tsukamoto T.: Improvement of lightfastness of fibers or fiber products dyed with violacein or deoxyviolacein bluish purple dyes by treating the dyed fibers with thiourea. Japan Pat. JP 1115 2687 A (1999).Google Scholar
  61. Khan M.S.A., Zahin M., Hasan S., Husain F.M., Ahmad I.: Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett.Appl.Microbiol.49, 354–360 (2009).CrossRefPubMedGoogle Scholar
  62. Kita Y., Nishikawa H., Ike M., Takemoto T.: Enhancement of Au dissolution by microorganisms using an accelerating cathode reaction. Metallurg.Mat.Trans.B40B, 2009–2044 (2009).Google Scholar
  63. Kodach L.L., Bos C.L., Durán N., Peppelenbosh M.P., Ferreira C.V., Hardwick J.C.H.: Inhibition of Akt-mediated signal transduction in human colorectal cancer cells by violacein abrogates 5-fluorouracil chemoresistance. Carcinogenesis27, 508–516 (2006).CrossRefPubMedGoogle Scholar
  64. Konzen M., DE Marco D., Cordova C.A.S., Vieira T.O., Antonio R.V., Creczynski-Pasa T.B.: Antioxidant properties of violacein: possible relation on its biological function. Bioorg.Med.Chem.14, 8307–8313 (2006).CrossRefPubMedGoogle Scholar
  65. Kubo H., Kotani H., Yamamoto Y., Hazato T.: Involvement of sperm proteases in the binding of sperm to the vitelline envelope in Xenopus laevis. Zoolog.Sci.25, 80–87 (2008).CrossRefPubMedGoogle Scholar
  66. Lai M.T., Yang C.C., Lin T.Y., Tsai F.J., Chen W.C.: Depsipeptide (FK228) inhibits growth of human prostate cancer cells. Urol. Oncol.Sem.Orig.Invest.26, 182–189 (2008).Google Scholar
  67. Leon L.L., Miranda C.C., De Souza A.O., Durán N.: Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J.Antimicrob.Chemother.48, 449–450 (2001).CrossRefPubMedGoogle Scholar
  68. Lim I.W.M., Stride P.J., Horvath R.L., Hamilton-Craig C.R., Chau P.P.: Chromobacterium violaceum endocarditis and hepatic abscesses treated successfully with meropenem and ciprofloxacin. Med.J.Austral.190, 386–387 (2009).PubMedGoogle Scholar
  69. Lima-Bittencourt C.I., Astolfi-Filho S., Chartone-Souza E., Santos F.R., Nascimento A.M.A.: Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems. BMC Microbiol.7, 58 doi:10.1186/1471-2180-7-58 (2007).CrossRefPubMedGoogle Scholar
  70. Lopes S.C.P., Blanco Y.C., Justo G.Z., Nogueira P.A., Rodrigues F.L.S., Goelnitz U., Wunderlich G., Facchini G., Brocchi M., Durán N., Costa F.T.M.: Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimocrob.Agents Chemother.53, 2149–2152 (2009).CrossRefGoogle Scholar
  71. Lu Y., Wang L., Xue Y., Zhang C., Xing X.H., Lou K., Zhang Z., Li Y., Zhang G., Bi J., Su Z.: Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem.Eng.J.43, 135–141 (2009).CrossRefGoogle Scholar
  72. Manjunath M.: Fatal septicemia due to Chromobacterium violaceum. West Indian Med.J.56, 380–381 (2007).PubMedGoogle Scholar
  73. Martins D., Frungillo L., Anazzetti M.C., Melo P.S., Durán N.: Antitumoral activity of L-ascorbic acid-poly-d,l-(lactide-coglycolide) nanoparticles containing violacein. Internat.J.Nanomed.5, 77–85 (2010).CrossRefGoogle Scholar
  74. Masuoka Y., Shindoh N., Inamura N.: Histone deacetylase inhibitors from microorganisms: the Astellas experience, in F. Petersen, R. Amstutz: Natur.Comp.Drugs2, 335–359 (2008).Google Scholar
  75. Matz C., Webb J.S., Schupp P.J., Phang S.Y., Penesyan A., Egan S., Steinberg P., Kjelleberg S.: Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One3, e2744, doi:10.1371/journal.pone.0002744(2008).CrossRefPubMedGoogle Scholar
  76. Meiring U., Lanzendoerfer G., Riedel H., Kallmayer V., Viala S., Mocigemba N., Schaefer J.: Cosmetic preparations containing violacein as dye. Ger.Pat. DE 102 005 051 869 A1 (2007).Google Scholar
  77. Melo P.S., Justo G.Z., DE Azevedo M.B.M., Durán N., Haun M.: Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology186, 217–225 (2003).CrossRefPubMedGoogle Scholar
  78. Melo P.S., DE Azevedo M.M.M., Frungillo L., Anazetti M.C., Marcato P.D., Durán N.: Nanocytotoxicity: violacein and violacein-loaded poly(d,l-lactide-co-glycolide) nanoparticles acting on human leukemic cells. J.Biomed.Nanotechnol.5, 192–201 (2009).CrossRefPubMedGoogle Scholar
  79. Mendes A.S., DE Carvalho J.E., Duarte M.C.T., Durán N., Bruns R.E.: Optimized production process of violacein and deoxyviolacein by Chromobacterium violaceum by factorial design and response surface methodology. Brazil.Pat. PIBr 0100199-0 (2001a).Google Scholar
  80. Mendes A.S., DE Carvalho J.E., Duarte M.C.T., Durán N., Bruns R.E.: Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol.Lett.23, 1963–1969 (2001b).CrossRefGoogle Scholar
  81. Morohoshi T., Kato M., Fukamachi K., Kato N., Ikeda T.: N-Acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol.Lett.279, 124–130 (2008).CrossRefPubMedGoogle Scholar
  82. Nomura T.: Natural dye violacein manufacture with Chromobacterium and Janthinobacterium. Japan Pat. JP 0625 3864 A (1994).Google Scholar
  83. Pantanella F., Berlutti F., Passariello C., Sarli S., Morea C., Schippa S.: Violacein and biofilm production in Janthinobacterium lividum. J.Appl.Microbiol.102, 992–999 (2007).PubMedGoogle Scholar
  84. Pearson R.N.: Chromobacterium violaceum endocarditis and hepatic abscesses treated successfully with meropenem and ciprofloxacin. Med.J.Austral.191, 416 (2009).PubMedGoogle Scholar
  85. Perpetuo E.A., Marques R.C.P., Mendes M.A., DE Lima W.C., Menck C.F.M., DO Nascimento C.A.O.: Characterization of the phenol monooxygenase gene from Chromobacterium violaceum: potential use for phenol biodegradation. Biotechnol.Bioproc. Eng.14, 694–701 (2009).CrossRefGoogle Scholar
  86. Pham V.A., Ting Y.P.: Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. Adv.Mat. Res.71–73 (Biohydrometallurgy) 661–664 (2009).CrossRefGoogle Scholar
  87. Philip D.S., Sarovich D.S., Pemberton J.M.: pPSY: a vector for the stable cloning and expression of streptomycete single gene phenotypes in Escherichia coli. Plasmid60, 53–58 (2008).CrossRefPubMedGoogle Scholar
  88. Philip D.S., Sarovich D.S., Pemberton J.M.: Complete sequence and analysis of the stability functions of pPSX, a vector that allows stable cloning and expression of streptomycete genes in Escherichia coli K12. Plasmid62, 39–43 (2009).CrossRefPubMedGoogle Scholar
  89. Praneenararat T., Geske G.D., Blackwell H.E.: Efficient synthesis and evaluation of quorum-sensing modulators using small molecule macroarrays. Org.Lett.11, 4600–4603 (2009).CrossRefPubMedGoogle Scholar
  90. Rettori D., Durán N.: Stationary tray bioreactor for the bacterial metabolite production. Brazil.Pat. PIBr 9702986-6 (1997).Google Scholar
  91. Ryan K.S., Balibar C.J., Turo K.E., Walsh C.T., Drennan C.L.: The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins. J.Biol.Chem.283, 6467–6475 (2008).CrossRefPubMedGoogle Scholar
  92. Sanchez C., Braña A.F., Mendez C., Salas J.A.: Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem.7, 1231–1240 (2006).CrossRefPubMedGoogle Scholar
  93. Sarovich D.S., Pemberton J.M.: pPSX: a novel vector for the cloning and heterologous expression of antitumor antibiotic gene clusters. Plasmid57, 306–313 (2007).CrossRefPubMedGoogle Scholar
  94. Shinoda K., Hasegawa T., Sato H., Shinozaki M., Kuramoto H., Takamiya Y., Sato T., Nikaidou N., Watanabe T., Hoshino T.: Biosynthesis of violacein: a genuine intermediate, protoviolaceinic acid, produced by VioABDE, and insight into VioC function. Chem.Commun. 4140–4142 (2007).Google Scholar
  95. Shirata A., Tsukamoto T., Yasui H., Kato H., Hayasaka S., Kojima A.: Production of bluish-purple pigments by Janthinobacterium lividum isolated from the raw silk and dyeing with them. Nippon Sanshigaku Zasshi66, 377–385 (1997).Google Scholar
  96. Shirata A., Tsukamoto T., Kato H., Hata T., Yasui T., Kojima A.: Blue purple pigment manufacture with microorganism and applications of the pigment. Japan Kokai Tokkyo Koho JP 10113169 A (1998).Google Scholar
  97. Shukla S.R., Damle A.J.: Colorants from microorganisms. Asian Dyer4, 33–34, 36–38 (2007).Google Scholar
  98. Singh B.N., Singh B.R., Singh R.L., Prakash D., Dhakarey R., Upadhyay G., Singh H.B.: Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem.Toxicol.47, 1109–1116 (2009).CrossRefPubMedGoogle Scholar
  99. Slesak G., Douangdala P., Inthalad S., Silisouk J., Vongsouvath M., Sengduangphachanh A., Moore C.E., Mayxay M., Matsuoka H., Newton P.N.: Fatal Chromobacterium violaceum septicaemia in northern Laos, a modified oxidase test and post-mortem forensic family G6PD analysis. Ann.Clin.Microbiol.Antimicrob.8, 24 doi:10.1186/1476-0711-8-24 (2009).CrossRefPubMedGoogle Scholar
  100. Swem L.R., Swem D.L., O’Loughlin C.T., Gatmaitan R., Zhao B., Ulrich S.M., Bassler B.L.: A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol.Cell35, 143–153 (2009).CrossRefPubMedGoogle Scholar
  101. Tan T.L., Montforts F.P., Meyer D.: Microbiological method for the biosynthesis of natural blue-violet colorants violacein and desoxyviolacein. PCT Internat.Appl. WO 20020 50299 A2 (2002).Google Scholar
  102. Teasdale M.E., Liu J.Y., Wallace J., Akhlaghi F., Rowley D.C.: Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in Gram-negative bacteria. Appl.Environ.Microbiol.75, 567–572 (2009).CrossRefPubMedGoogle Scholar
  103. Uroz S., Oger P., Chhabra S.R., Cámara M., Williams P., Dessaux Y.: N-Acylhomoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Arch.Microbiol.187, 249–256 (2007).CrossRefPubMedGoogle Scholar
  104. Vasconcelos al. (Brazilian National Genome Project Consortium; 109 authors): The complete genome of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc.Nat.Acad.Sci.USA100, 11660–11665 (2003).CrossRefGoogle Scholar
  105. Vattem D.A., Mihalik K., Crixell S.H., Mclean R.J.C.: Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia78, 302–310 (2007).CrossRefPubMedGoogle Scholar
  106. Vijayan A.P., Anand M.R., Remesh P.: Chromobacterium violaceum sepsis in an infant. Indian Pedriat.46, 721–722 (2009).Google Scholar
  107. Wang Y., Ikawa A., Okaue S., Taniguchi S., Osaka I., Yoshimoto A., Kishida Y., Arakawa R., Enomoto K.: Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas. Biosci.Biotechnol.Biochem.72, 1958–1961 (2008).CrossRefPubMedGoogle Scholar
  108. Wang H., Jiang P., Lu Y., Ruan Z., Jiang R., Xin-hui Xing X.H., Lou K., Wei D.: Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem.Eng.J.44, 119–124 (2009).CrossRefGoogle Scholar
  109. Watine J., Courtade A., Pham E., Lievrouw C., Dubourdieu B., Guerin B., Gineston J.L.: Chromobacterium violaceum peritonitis: case report and literature review. Ann.Biol.Clin.64, 327–330 (2006).Google Scholar
  110. Yada S., Wang Y., Zou Y., Nagasaki K., Hosokawa K., Osaka I., Arakawa R., Enomoto K.: Isolation and characterization of two groups of novel marine bacteria producing violacein. Marine Biotechnol.10, 128–132 (2008).CrossRefGoogle Scholar
  111. Yang L.H., Xiong H., Lee O.O., Qi S.H., Qian P.Y.: Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett.Appl.Microbiol.44, 625–630 (2007).CrossRefPubMedGoogle Scholar
  112. Yurek-george A., Cecil A.R.L., Mo A.H.K., Wen S., Rogers H., Habens F., Maeda S., Yoshida M., Packham G., Ganesan A.: The first biologically active synthetic analogues of FK228, the depsipeptide histone deacetylase inhibitor. J.Med.Chem.50, 5720–5726 (2007).CrossRefPubMedGoogle Scholar
  113. Zhu H., Sun S.J.: Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract. Curr.Microbiol.57, 418–422 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  • M. Durán
    • 1
  • A. Faljoni-Alario
    • 2
  • N. Durán
    • 1
    • 2
  1. 1.Biological Chemistry Laboratory, Institute of ChemistryUniversidade Estadual de CampinasCampinas, SP.Brazil
  2. 2.Department of Biochemistry and Biophysic, Center of Natural and Human SciencesUniversidade Federal do ABCSanto André, SP.Brazil

Personalised recommendations