Advertisement

Folia Microbiologica

, Volume 55, Issue 5, pp 447–453 | Cite as

Degrading ability of oligocyclic aromates by Phanerochaete sordida selected via screening of white rot fungi

  • H. Lee
  • Y. -S. Choi
  • M. -J. Kim
  • N. -Y. Huh
  • G. -H. Kim
  • Y. W. Lim
  • S. -M. Kang
  • S. -T. Cho
  • J. -J. Kim
Article

Abstract

Seventy-nine white rot strains were screened to determine if they had the potential for use in the degradation of oligocyclic aromates (PAHs) by measuring their dye-decoloration rate. Fourteen strains that were selected based on their dye-decoloration rate were then evaluated for the ability to tolerate various levels of PAHs spiked in agar medium. The ability of white rot fungi to degrade 3- or 4-ring PAHs (anthracene, phenanthrene, fluoranthene, pyrene) was determined. Two strains of Phanerochaete sordida (KUC8369, KUC8370) were possible PAHs degraders, degrading a significantly greater amount of phenanthrene and fluoranthene than the culture collection strain P. chrysosporium (a known PAHs degrader). The production of manganese peroxidase, the only extracellular ligninolytic enzyme detected during the cultivation, was evaluated.

Keywords

Polycyclic Aromatic Hydrocarbon Pyrene Phenanthrene Fluoranthene Lignin Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ANT

anthracene

PHE

phenanthrene

ELM(s)

extracellular ligninolytic enzyme(s)

LiP

lignin peroxidase

GC

gas chromatography

MEA

malt extract agar medium

MS

mass spectrometry

FLT

fluoranthene

PYR

pyrene

LAC

laccase (phenol oxidase)

MnP

Mn-dependent peroxidase

PAH(s)

oligocyclic aromate(s) (‘polycyclic aromatic hydrocarbons’)

RBBR

Remazol brilliant blue R

WRF

white rot fungus(i)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul S.F., Boguski M.S., Gish W., Wootton J.C.: Issues in searching molecular sequence databases. Nat.Genet.6, 119–129 (1994).CrossRefPubMedGoogle Scholar
  2. Bezalel L., Hadar Y., Cerniglia C.E.: Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl.Environ.Microbiol.62, 292–295 (1996).PubMedGoogle Scholar
  3. Bumpus J.A.: Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl.Environ.Microbiol.55, 154–158 (1989).PubMedGoogle Scholar
  4. Cajthaml J., Erbanová P., Kollmann A., Novotný Č., Šašek V., Moucin C.: Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol.53, 289–294 (2008).CrossRefGoogle Scholar
  5. Cerniglia C.E., Kelly D.W., Freeman J.P., Miller D.W.: Microbial metabolism of pyrene. Chem.Biol.Interact.57, 203–216 (1986).CrossRefPubMedGoogle Scholar
  6. De Koker T.H., Nakasone K.K., Haarhof J., Burdsall H.H. Jr., Janse B.J.H.: Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycol.Res.107, 1032–1040 (2003).CrossRefPubMedGoogle Scholar
  7. Gardes M., Bruns T.D.: ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol.Ecol.2, 113–118 (1993).CrossRefPubMedGoogle Scholar
  8. Hadibarata T., Tachibana S., Itoh K.: Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J.Hazard Mater.164, 911–917 (2009).CrossRefPubMedGoogle Scholar
  9. Hammel K.E., Kalyanaraman B., Kirt T.K.: Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosponum ligninase. J.Biol.Chem.261, 16948–16952 (1986).PubMedGoogle Scholar
  10. Haritash A.K., Kaushik C.P.: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J.Hazard Mater.169, 1–15 (2009).CrossRefPubMedGoogle Scholar
  11. Hwang S.S., Song H.G.: Biodegradation of pyrene by the white rot fungus, Irpex lacteus. J.Microbiol.Biotechnol.10, 344–348 (2000).Google Scholar
  12. Juan D., Jun C., Juan Z., Shixiang G.: Polycyclic aromatic hydrocarbon and biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium. J.Environ.Sci.20, 88–93 (2008).CrossRefGoogle Scholar
  13. Kim G.-H., Lim Y.W., Song Y.-S., Kim J.-J.: Decay fungi from playground wood products in service using LSU rDNA sequence analysis. Holzforschung59, 459–466 (2005).CrossRefGoogle Scholar
  14. Kim G.-H., Lim Y.W., Choi Y.-S., Kim M.-J., Kim J.-J.: Primary and secondary decay fungi on exposed pine tree logs in the forest. Holzforschung63, 633–638 (2009).CrossRefGoogle Scholar
  15. Lamar R.T., Larsen M.J., Kirt T.K.: ’sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl.Environ. Microbiol.56, 3519–3526 (1990).Google Scholar
  16. Lambert M., Kremer S., Sterner O., Anke H.: Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl.Environ.Microbiol.60, 3597–3601 (1994).PubMedGoogle Scholar
  17. Lange B., Kremer S., Sterner O., Anke H.: Pyrene metabolism in Crinipellis stipitaria: identification of trans-4,5-dihydro-4,5-dihydroxypyrene and 1-pyrenylsulfate in strain JK364. Appl.Environ.Microbiol.60, 3602–3607 (1994).PubMedGoogle Scholar
  18. Lei A.P., Wong Y.S., Tam N.F.Y.: Removal of pyrene by different microalgal species. Water Sci.Technol.46, 195–201 (2002).PubMedGoogle Scholar
  19. Lei A.P., Hu Z.L., Wong Y.S., Tam N.F.Y.: Removal of fluoranthene and pyrene by different microalgal species. Biores.Technol.98, 273–280 (2007).CrossRefGoogle Scholar
  20. Lim Y.W., Kim J.-J., Chedgy R., Morris P.I., Breuil C.: Fungal diversity from western redcedar fences and their resistance to β-thujaplicin. Antonie van Leeuwenhoek87, 109–117 (2005).CrossRefPubMedGoogle Scholar
  21. Morgan P., Lewis S.T., Watkinson R.J.: Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl.Microbiol.Biotechnol.34, 693–696 (1991).CrossRefGoogle Scholar
  22. Novotný Č., Svobodová K., Erbanová P., Cajthaml T., Kasinath A., Lang E., Šašek V.: Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol.Biochem.36, 1545–1551 (2004).CrossRefGoogle Scholar
  23. Pasti M.B., Crawford D.L.: Relationship between the abilities of streptomycetes to decolorize three anthron-type dyes and to degrade ligno-cellulose. Can.J.Microbiol.37, 902–907 (1991).CrossRefGoogle Scholar
  24. Potin O., Rafin C., Veignie E.: Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Internat.Biodeterior.Biodegrad.54, 45–52 (2004).CrossRefGoogle Scholar
  25. Sanglard D., Leisola M.S.A., Fiechter A.: Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microb.Technol.8, 209–212 (1986).CrossRefGoogle Scholar
  26. Singh D., Chen S.: The white-rot fungus Panerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl.Microbiol.Biotechnol.81, 399–417 (2008).CrossRefPubMedGoogle Scholar
  27. Suhara H., Daikoku C., Takata H., Suzuki S., Matsufuji Y., Sakai K., Kondo R.: Monitoring of white-rot fungus during bioremediation of polychlorinated dioxin contaminated fly ash. Appl.Microbiol.Biotechnol.62, 601–607 (2003).CrossRefPubMedGoogle Scholar
  28. Swofford D.L.: PAUP: Phylogenetic analysis using parsimony; version 4.0b10. Sinauer Associates Inc., Sunderland (MA, USA) 2002.Google Scholar
  29. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.: The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl.Acids Res.24, 4876–4882 (1997).CrossRefGoogle Scholar
  30. Tien M., Kirk T.K.: Lignin peroxidases of Phanerochaete chrysosporium. Meth.Enzymol.161, 238–249 (1988).CrossRefGoogle Scholar
  31. Verdin A., Sahraoui A.L.H., Fontaine J., Grandmougin-Ferjani A., Durand R.: Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza16, 397–405 (2006).CrossRefPubMedGoogle Scholar
  32. Vyas B.R.M., Volc J., Šašek V.: Effects of temperature on the production of manganese peroxidase and lignin peroxidase by Phanerochaete chrysosporium. Folia Microbiol.39, 19–22 (1994).CrossRefGoogle Scholar
  33. Wang P., Hu X., Cook S., Begonia M., Lee K.S., Hwang H.M.: Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J.Microbiol.Biotechnol.24, 2205–2212 (2008).CrossRefGoogle Scholar
  34. White T.J., Bruns T.D., Lee S., Taylor J.W.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322 in M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Eds): PCR Protocols: a Guide to Methods and Applications. Academic Press, San Diego (CA, USA) 1990.Google Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  • H. Lee
    • 1
  • Y. -S. Choi
    • 1
  • M. -J. Kim
    • 1
  • N. -Y. Huh
    • 1
  • G. -H. Kim
    • 1
  • Y. W. Lim
    • 2
  • S. -M. Kang
    • 3
  • S. -T. Cho
    • 3
  • J. -J. Kim
    • 1
    • 4
  1. 1.Division of Environmental Science& Ecological Engineering, College of Life Sciences & BiotechnologyKorea UniversitySeoulKorea
  2. 2.National Institute of Biological Resources (NIBR)IncheonKorea
  3. 3.Department of Forest Resources UtilizationKorea Forest Research InstituteSeoulKorea
  4. 4.Division of Environmental Science & Ecological EngineeringKorea UniversitySeoulKorea

Personalised recommendations