Folia Microbiologica

, Volume 55, Issue 1, pp 61–67 | Cite as

Efficacy of Rhodotorula glutinis and Spirulina platensis carotenoids in immunopotentiation of mice infected with Candida albicans SC5314 and Pseudomonas aeruginosa 35

  • M. M. El-SheekhEmail author
  • Y. A. -G. Mahmoud
  • A. M. Abo-Shady
  • W. Hamza


Enhancement of the immune response leading to protection against bacterial and fungal infections was shown using different schedules of immunization with microbial pigments and a polysaccharide. The group of mice given carotenoids of Rhodotorula glutinis (preparation I) and polysaccharide of Spitulina platensis (IV) survived for 2 weeks after Pseudomonas aeruginosa infection. The groups of mice given carotenoids (I), polysaccharide (IV), I+IV and with the crude phycocyanin of S. platensis (III)+IV survived for 2 weeks after Candida albicans infection. All other groups recorded a maximum level of mortality reaching 2 mice per group either after immunization or post-infection. Adding the carotenoids, phycocyanin and polysaccharides to food as additives might therefore enhance the human immune response against microbial infections.


Carotenoid Lycopene Astaxanthin Invasive Aspergillosis Spirulina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



cell wall component from Bacillus tuberculosis


colony forming unit


hot water extract


Candida albicans


Rhodotorula glutinis






phosphate-buffered saline


Pseudomonas aeruginosa


Spirulina platensis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham E.: Intranasal immunization with bacterial polysaccharide containing liposomes enhances antigen-specific pulmonary secretory antibody response. Vaccine10, 461–468 (1992).CrossRefPubMedGoogle Scholar
  2. Akyon Y.: Effect of antioxidants on the immune response of Helicobacter pylori. Clin.Microbiol.Infect. 8, 438–441 (2002).CrossRefPubMedGoogle Scholar
  3. An G.H., Schuman D.B., Johnson E.A.: Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl.Environ. Microbiol. 55, 116–124 (1989).PubMedGoogle Scholar
  4. Baojiang G.: Study on effect and mechanism of polysaccharides of Spirulina on body immune function improvement. Proc. 2nd Asia Pacific Conf. Algal Biotechnology, pp. 33–38. University of Malaysia 1994.Google Scholar
  5. Belay A.: Current knowledge on potential health benefits of Spirulina. J.Appl.Phycol. 5, 235–241 (1993).CrossRefGoogle Scholar
  6. Cheng-wu Z., Chao-Tsi T., Yuan-Zhen Z.: The effects of polysaccharide and phycocyanin from Spirulina platensis on peripheral blood and hematopoietic system of bone marrow in mice. Abstracts 2nd Asia Pacific Conf. Algal Biotechnology, p. 58. University of Malaysia 1994.Google Scholar
  7. Dostert C., Tshopp J.: Detecting fungal pathogens. Nature Immunol. 8, 7–18 (2007).CrossRefGoogle Scholar
  8. El-SHOUNY W.A.: Purification and immunoprotective efficacy of Pseudomonas syringae pv. coriandricola exopolysaccharide against Pseudomonas aeruginosa infection in mice. Asian J.Pharm.Sci. 25, 149–165 (2000).Google Scholar
  9. Fattom A., Sarwar J., Ortiz A., Naso R.A.: Staphylococcus aureus capsular polysaccharide (cp) vaccine and cp-specific antibodies protect mice against bacterial challenge. Infect.Immun. 64, 1659–1665 (1996).PubMedGoogle Scholar
  10. Gonzalez R., Rodriguez S., Romay C., Ancheta O., Gonzalez A., Armesto J., Remirez D., Merino N.: Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol.Res. 39, 55–59 (1999).CrossRefPubMedGoogle Scholar
  11. Gouveia L., Rema P., Pereira O., Empis J.: Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquaculture Nutrit. 9, 123–129 (2003).CrossRefGoogle Scholar
  12. Guerin M., Huntley M.E., Olaizola M.: Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210–216 (2003).CrossRefPubMedGoogle Scholar
  13. Hayashi O., Katoh T., Okuwaki Y.: Enhancement of antibody production in mice by dietary Spirulina platensis. J.Nutrit.Sci.Vitaminol. 40, 431–441 (1994).Google Scholar
  14. Hayashi O., Hirahashi T., Katoh T., Miyajima H., Hirano T., Okuwaki Y.: Class-specific influence of dietary Spirulina platensis on antibody production in mice. J.Nutrit.Sci.Vitaminol. 44, 841–851 (1998).Google Scholar
  15. Karahan I., Ateşşahın A., Yilmaz S., Çerıbaşi A.O., Sakın F.: Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology215, 198–204 (2005).CrossRefPubMedGoogle Scholar
  16. Karpov L.M., Brown I.I., Poltavtseva N.V., Ershova O.N., Karakis S.G., Vasileva T.V., Chaban I.L.: The postradiation use of vitamin-containing complexes and a phycocyanin extract in a radiation lesion in rats. Radiat.Biol.Radioecol. 3, 310–314 (2000).Google Scholar
  17. Kochert G.: Carbohydrate determination by the phenol-sulphuric acid method, in Handbook of Physiological and Biochemical Methods. Cambridge University Press, Cambridge 1973.Google Scholar
  18. Liang C., Zhao F., Wei W., Wen Z., Qin S.: Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics. Internat.J.Biol.Sci. 2, 197–207 (2006).Google Scholar
  19. Mao T.K., van De Water J., Gershwin M.E.: Effect of Spirulina on the secretion of cytokines from peripheral blood mononuclear cells. J.Med.Food3, 135–140 (2000).CrossRefPubMedGoogle Scholar
  20. Mazo V.K., Gmoshinskii I.V., Sokolova A.G., Zorin S.N., Danilina L.L., Litvinova A.V., Radchenko S.N.: Effect of biologically active food additives containing autolysate of baker’s yeast and Spirulina on intestinal permeability in an experiment. Vopr.Pitan. 68, 17–19 (1999).PubMedGoogle Scholar
  21. Peterson W.J., Bell T.A., Etchells J.L. Jr.: A procedure for demonstrating the presence of carotenoid pigments in yeasts. J.Ser. North Carolina Agricult.Exper.Station67, 708–713 (1954).Google Scholar
  22. Qureshi M., Ali R.: Spirulina platensis exposure enhances macrophage phagocytic function in cats. Immunopharmacol.Immunotoxicol. 18, 457–463 (1996).CrossRefPubMedGoogle Scholar
  23. Qiang H., Zhengyut Zvi C.H., Richmond A.: Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur.J.Phycol. 32, 81–86 (1997).CrossRefGoogle Scholar
  24. Reddy C.M., Bhat V.B., Kiranmai G., Reddy M.N., Reddanna P., Madyastha K.M.: Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem.Biophys.Res.Commun. 3, 599–603 (2000).CrossRefGoogle Scholar
  25. Roberts J., Schock K., Marino S., Andriole V.T.: Efficacies of two new antifungal agents, the triazole ravuconazole and the echinocandin LY-303366, in an experimental model of invasive aspergillosis. Antimicrob.Agents Chemother. 44, 3381–3388 (2000).CrossRefPubMedGoogle Scholar
  26. Saeki Y., Matsumoto M., Hayashi A., Azuma I., Toyoshima K., Seya T.: Innate immunotherapy for cancer: antitumor effects of BCG-CWS in implanted tumor model. Summary at the 59th Annual Meet. Japanese Cancer Association, Tokyo 2000a.Google Scholar
  27. Saeki Y., Matsumoto M., Hayashi A., Azuma I., Toyoshima K., Seya T.: The effect of Spirulina hot water extract to the basic immune activation. Summary at the 30th Annual Meet. Japanese Society for Immunology, Tokyo 2000b.Google Scholar
  28. SPSS Base of 10.0 User’s Guide. IBM Acquires SPSS Inc., Chicago (IL, USA) 1999.Google Scholar
  29. Takaichi S., Mochimaru M., Maoka T., Katoh H.: Myxol and 4-ketomyxol 2′-fucosides, not rhamnosides, from Anabaena sp. PCC 7120 and Nostoc punctiforme PCC 73102, and proposal for the biosynthetic pathway of carotenoids. Plant Cell Physiol. 46, 497–504 (2005).CrossRefPubMedGoogle Scholar
  30. Vadiraja B., Gaikwad N., Madyastha K.: Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicity in rats. Biochem.Biophys.Res.Commun. 249, 428–431 (1998).CrossRefPubMedGoogle Scholar
  31. Yu H., Boucher J.C., Hibler N.S., Deretic V.: Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (σE). Infect.Immun. 64, 2774–463 (1996).PubMedGoogle Scholar
  32. Zarrouk C.: Contribution a l’etude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (SETCH et GARDNER) GEITL. PhD Thesis, Université de Paris 1966.Google Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  • M. M. El-Sheekh
    • 1
    Email author
  • Y. A. -G. Mahmoud
    • 1
  • A. M. Abo-Shady
    • 1
  • W. Hamza
    • 1
  1. 1.Botany Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations