Advertisement

Folia Microbiologica

, Volume 55, Issue 1, pp 29–34 | Cite as

Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees

  • K. Fujii
  • T. Sugimura
  • K. Nakatake
Article

Abstract

It is generally accepted that dead tree decomposition is performed mainly by delignifying basidiomycetes. While ascomycetes have been reported to inhabit dead tree bark, their contribution to dead tree decomposition is still unclear. Here, we isolated five bark-inhabiting ascomycetes possessing cellulolytic activity from dead beech tree and assessed their polysaccharolytic activities. When cultivated in a medium containing filter paper as a sole carbon source, three strains degraded >40 % of the filter paper in a 4-week cultivation and the others degraded 15–30 % of the paper. The degraders possessed amylolytic, pectinolytic, and mannanolytic activities as well as cellulolytic activity, implying that they play an important role in dead tree decomposition after delignification by basidiomycetes. Phylogenetic analysis based on large subunit ribosomal DNA (lsu-DNA) sequences implied that the isolates belonged to Penicillium or Amorphotheca.

Keywords

Pectin Galactomannan Yeast Nitrogen Base Filter Paper Disc Cellulolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abliz P., Fukushima K., Takizawa K., Nishimura K.: Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol.Med.Microbiol.40, 41–49 (2004).CrossRefPubMedGoogle Scholar
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment search tool. J.Mol.Biol.215, 403–410 (1990).PubMedGoogle Scholar
  3. Bååth E., Anderson T.H.: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol.Biochem.35, 955–963 (2003).CrossRefGoogle Scholar
  4. Baldrian P.: Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol.1, 4–12 (2008).CrossRefGoogle Scholar
  5. Baldrian P., Valašková V.: Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol.Rev.32, 501–521 (2008).CrossRefPubMedGoogle Scholar
  6. Blagodatskaya E.V., Anderson T.H.: Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol.Biochem.30, 1269–1274 (1998).CrossRefGoogle Scholar
  7. Bunyard B.A., Nicholson M.S., Royse D.J.: Phylogenetic resolution of Morchella, Verpa, and Disciotis based on restriction enzyme analysis of the 28S ribosomal RNA gene. Exp.Mycol.19, 223–233 (1995).CrossRefPubMedGoogle Scholar
  8. Chen J.C., Liu Z.S.: Soil characteristics and clay mineralogy of two subalpine forest spodosols with clay accumulation in Taiwan. Soil Sci.169, 66–80 (2004).CrossRefGoogle Scholar
  9. Cofone L. Jr., Walker J.D., Cooney J.J.: Utilization of hydrocarbons by Cladosporium resinae. J.Gen.Microbiol.76, 243–246 (1973).PubMedGoogle Scholar
  10. Deshpande V., Rao M., Keskar S., Mishra C.: Occurrence of a procellulase in the culture filtrates of Penicillium janthinellum. Enzyme Microb.Technol.6, 371–374 (1984).CrossRefGoogle Scholar
  11. Felsenstein J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791 (1985).CrossRefGoogle Scholar
  12. Ghose T.K.: Measurement of cellulose activities. Pure Appl.Chem.59, 257–268 (1987)CrossRefGoogle Scholar
  13. Hernández-Luna C.E., Gutiérrez-Soto G., Salcedo-martínez S.M.: Screening for decolorizing basidiomycetes in Mexico. World J.Microbiol.Biotechnol.24, 465–473 (2008).CrossRefGoogle Scholar
  14. Hinrikson H.P., Hurst S.F., Lott T.J., Warnock D.W., Morrison C.J.: Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J.Clin.Microbiol.43, 2092–2103 (2005).CrossRefPubMedGoogle Scholar
  15. Krogh K.B.R., Mørkeberg A., Jørgensen H., Frisvad J.C., Olsson L.: Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl.Biochem.Biotechnol.113–116, 389–401 (2005).Google Scholar
  16. Kubátová A.: Neglected Penicillium spp. associated with declining trees, pp. 299–308 in Integration of Modern Taxonomic methods for Penicillium and Aspergillus Classification. Taylor & Francis, London 2000.Google Scholar
  17. Kurtzman C.P., Robnett C.J.: Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek73, 331–371 (1998).CrossRefPubMedGoogle Scholar
  18. Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtas-Wasilewska M., Cho N.S., Hofrichter M.: Biodegradation of lignin by white rot fungi. Fungal Genet.Biol.27, 175–185 (1999).CrossRefPubMedGoogle Scholar
  19. Liers C., Ullrich R., Steffen K.T., Hatakka A., Hofrichter M.: Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl.Microbiol.Biotechnol.69, 573–579 (2005).CrossRefPubMedGoogle Scholar
  20. Lopez M.J., Vargas-García M.C., Suarez-Estrellá F., Nichols N.N., Dien B.S., Moreno J.: Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzyme Microb.Technol.40, 794–800 (2007).CrossRefGoogle Scholar
  21. Madhu G.L.S., Prabhu K.A.: Studies on dextranase from Penicillium aculeatum. Enzyme Microb.Technol.6, 217–220 (1984).CrossRefGoogle Scholar
  22. Morris D.L.: Quantitative determination of carbohydrates with Dreywoods anthrone reagent. Science107, 254–255 (1948).CrossRefPubMedGoogle Scholar
  23. O’brien H.E., Parrent J.L., Jackson J.A., Moncalvo J.M., Vilgalys R.: Fungal community analysis by large-scale sequencing of environmental samples. Appl.Environ.Microbiol.71, 5544–5550 (2005).CrossRefPubMedGoogle Scholar
  24. Osono T., Takeda H.: Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia94, 421–427 (2002).CrossRefGoogle Scholar
  25. Osono T., Takeda H.: Fungal decomposition of Abies needle and Betula leaf litter. Mycologia98, 172–179 (2006).CrossRefPubMedGoogle Scholar
  26. Pandedy S., Selvakumar P., Soccol C.R., Nigam P.: Solid state fermentation for the production of industrial enzymes. Current Sci.77, 143–162 (1999).Google Scholar
  27. Rigas F., Marchant R., Dritsa V., Kapsanaki-Gotsi E., Gonou-Zagou Z., Avramides E.J.: Screening of wood rotting fungi potentially useful for degradation of organic pollutants. Water Air Soil Poll.3, 201–210 (2003).Google Scholar
  28. Saha B.C., Iten L.B., Cotta M.A., Wu Y.V.: Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol.Progr.21, 816–822 (2005).CrossRefGoogle Scholar
  29. Saitou N., Nei M.: The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol.Biol.Evol.4, 406–425 (1987).PubMedGoogle Scholar
  30. Satomi M., Kimura B., Mizoi M., Satou T., Fujii T.: Tetragenococcus muriaticus sp.nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Internat.J.Syst.Bacteriol.47, 832–836 (1997).CrossRefGoogle Scholar
  31. Sheridan J.E.: Monitoring for the kerosene fungus Amorphotheca resinae. Revista Microbiol.5, 67–71 (1974).Google Scholar
  32. Šnajdr J., Baldrian P.: Temperature affects the production, activity, and stability of lignolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol.5, 498–502 (2007).CrossRefGoogle Scholar
  33. The J.S., Lee K.H.: Utilization of n-alkanes by Cladosporium resinae. Appl.Environ.Microbiol.25, 454–457 (1973).Google Scholar
  34. Thompson J.D., Higgins D.G., Gibson T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl.Acids Res.22, 4673–4680 (1994).CrossRefPubMedGoogle Scholar
  35. Timell T.E.: Recent progress in the chemistry of wood hemicelluloses. Wood Sci.Technol.1, 45–70 (1967).CrossRefGoogle Scholar
  36. Tomšovský M., Popelářová P., Baldrian P.: Production and regulation of lignocellulose-degrading enzymes of Poria-like woodinhabiting basidiomycetes. Folia Microbiol.1, 74–80 (2009).CrossRefGoogle Scholar
  37. Vidal S., Salmon J., Williams P., Pellerin P.: Penicillium daleae, a soil fungus able to degrade rhamnogalacturonan II, a complex pectic polysaccharide. Enzyme Microb.Technol.24, 283–290 (1999).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  1. 1.Department of AgricultureYamaguchi UniversityYoshida, YamaguchiJapan

Personalised recommendations