Folia Microbiologica

, Volume 54, Issue 6, pp 516–520 | Cite as

Susceptibility of Staphylococcus aureus strains toward combinations of oxacillin-2,4-dihydroxychalcone

  • J. M. Talia
  • M. A. Alvarez
  • N. B. Debattista
  • N. B. Pappano
Article

Abstract

In order to determine the existence of synergism of the bacteriostatic action of flavonoids against G+ bacteria between a clinically interesting conventional antibiotic and a flavonoid, combinations of oxacillin (OXC) and 2,4-dihydroxychalcone (DCH) as enhancer were assayed against methicillin-sensitive Staphylococcus aureus ATCC 29 213 and methicillin-resistant S. aureus ATCC 43 300. Using a kinetic-turbidimetric method, growth kinetics was monitored in a broth containing variable amounts of OXC alone and combinations of variable OXC-constant DCH. The minimum inhibitory concentrations (MIC) of OXC alone and in combination with DCH were evaluated. For the 29 213 strain, OXC MIC was 25 μg/mL, while combinations of 2–8 μg/mL OXC with 10 μg/mL of DCH totally inhibited growth and showed synergism. The resistance of the 43 300 strain in the presence of OXC was verified; OXC-DCH combinations decreased bacterial growth by 35 %. DCH augments the action of OXC against methicillin-susceptible S. aureus and therefore constitutes a good bacteriostatic agent for methicillin-resistant S. aureus.

Abbreviations

DCH

2,4-dihydroxychalcone

MIC

minimum inhibitory concentration

MRSA

methicillin-resistant (S. aureus)

MSSA

methicillin-sensitive (S. aureus)

OXC

oxacillin

PRSP

penicillin-resistant (S. pneumoniae)

VRE

vancomycin-resistant enterococci

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez M.A., Zarelli V.E., Pappano N.B., Debattista N.B.: Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli ATCC 25 922. Biocell28, 31–34 (2004).Google Scholar
  2. Alvarez M.A., Pappano N.B., Debattista N.B.: Synergism of flavonoids with bacteriostatic action against Staphylococcus aureus ATCC 25 923 and Escherichia coli ATCC 25 922. Biocell30, 39–42 (2006).Google Scholar
  3. Alvarez M.A., Debattista N.B., Pappano N.B.: Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbiol.53, 23–28 (2008).CrossRefGoogle Scholar
  4. Basri D.F., Zin N.M., Bakar N.S., Rahmat F., Mohtar M.: Synergistic effects of phytochemical and oxacillin on laboratory passage-derived vancomycin-intermediate Staphylococcus aureus strain. J.Med.Sci.8, 131–136 (2008).CrossRefGoogle Scholar
  5. Brickner S.J., Hutchinson D.K., Barbachyn M.R., Manninen P.R., Ulanowicz D.A., Garmon S.A., Grega K.C., Hendges S.K., Toops D.S., Ford C.W., Zurenko G.E.: Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant Gram-positive bacterial infections. J.Med.Chem.39, 673–679 (1996).CrossRefPubMedGoogle Scholar
  6. Cushnie T.T.P., Lamb A.J.: Antimicrobial activity of flavonoids. Internat.J.Antimicrob.Agents26, 343–356 (2005).CrossRefGoogle Scholar
  7. Dhar D.N.: The Chemistry of Chalcones and Related Compounds, pp. 5–9. John Wiley & Sons, New York 1981.Google Scholar
  8. Enright M.C., Robinson D.A., Randle G., Feil E.J., Grundmann H., Spratt B.G.: The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc.Nat.Acad.Sci.USA99, 7687–7692 (2002).CrossRefPubMedGoogle Scholar
  9. Fridkin S.K., Hageman J.C., Morrison M., Sanza L.T., Comosabetti K., Jernigan J.A., Harriman K., Harrison L.H., Lynfield R., Farley M.M..: Methicillin-resistant Staphylococcus aureus disease in three communities. N.Engl.J.Med.352, 1436–1444 (2005).CrossRefPubMedGoogle Scholar
  10. Fukai T., Marumo A., Kaitou K., Kanda T., Terada S., Nomura T.: Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia73, 536–539 (2002).CrossRefPubMedGoogle Scholar
  11. Haraguchi H., Tanimoto K., Tamura Y., Mizutani K., Kinoshita T.: Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry48, 125–129 (1998).CrossRefPubMedGoogle Scholar
  12. Havsteen B.: Flavonoids, a class of natural products of high pharmacological potency. Biochem.Pharmacol. 32, 1141–1148 (1983).CrossRefPubMedGoogle Scholar
  13. Middleton E. Jr., Kandaswami C., Theoharides T.C.: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol.Rev.52, 673–751 (2000).PubMedGoogle Scholar
  14. Mori A., Nishino C., Enoki N., Tawata S.: Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry26, 2231–2234 (1987).CrossRefGoogle Scholar
  15. Nakatsu T., Lupo A., Chinn J., Kang R.: Biological activity of essential oils and their constituents. Stud.Natur.Prod.Chem.21, 571 (2000).CrossRefGoogle Scholar
  16. NCCLS (National Committee for Clinical Laboratory Standards): Performance Standards for Antimicrobial Disk Susceptibility Tests, 7th ed.; NCCLS Document M2-A8. National Committee for Clinical Laboratory Standards, Wayne (PA) 2004a.Google Scholar
  17. NCCLS:Performance Standards for Antimicrobial Susceptibility Testing, 14th Informational Suppl.; NCCLS Document M100-S14. National Committee for Clinical Laboratory Standards, Wayne (PA) 2004b.Google Scholar
  18. NCCLS:Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 5th ed. NCCLS Document M7-A6. National Committee for Clinical Laboratory Standards, Wayne (PA) 2004c.Google Scholar
  19. Nguyen D.M., Mascola L., Brancoft E.: Recurring methicillin-resistant Staphylococcus aureus infections in a football team. Emerg.Infect.Dis.11, 526–532 (2005).PubMedGoogle Scholar
  20. Pan E.S., Diep B.A., Charlebois E.D., Auerswald C., Carleton H.A., Sensabaugh G.F., Perdreau-remington F.: Population dynamics of nasal strains of methicillin-resistant Staphylococcus aureus and their relation to community-associated disease activity. J.Infect.Dis.192, 811–818 (2005).CrossRefPubMedGoogle Scholar
  21. Pappano N.B., Centorbi O.P., Ferretti F.H.: Determinación de la concentración mÍnima inhibitoria a partir de parámetros cinéticos de crecimiento. Rev.Microbiol.21, 183–188 (1990).Google Scholar
  22. Pappano N.B., Centorbi O.P., Ferretti F.H.: Determination of the responsible molecular zone for the chalcones bacteriostatic activity. Rev.Microbiol.25, 168–174 (1994).Google Scholar
  23. Radulović N., Miíć M., Aleksić J., Đoković D., Palić R., Stojanović G.: Antimicrobial synergism and antagonism of salicylaldehyde in Filipendula vulgaris essential oil. Fitoterapia78, 565–570 (2007).CrossRefPubMedGoogle Scholar
  24. Saiman L., O’Keefe M., Graham P.L. III, Wu F., Said-Salim B., Kreiswirth B., Lasala A., Schlievert P.M., Della-Latta P.: Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin. Infect.Dis.37, 313–1319 (2003).CrossRefGoogle Scholar
  25. Saravolatz L.D., Pohlod D.J, Arking L.M.: Community-acquired methicillin-resistant Staphylococcus aureus infections: a new source for nosocomial outbreaks. Ann.Intern.Med.97, 325–329 (1982).PubMedGoogle Scholar
  26. Stapleton P.D., Shah S., Anderson J.C., Hara Y., Hamilton-miller J.M.T., Taylor P.W.: Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Internat.J.Antimicrob.Agents23, 462–467 (2004).CrossRefGoogle Scholar
  27. Tsuchiya H., Iinuma M.: Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine7, 161–165 (2000).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2009

Authors and Affiliations

  • J. M. Talia
    • 1
  • M. A. Alvarez
    • 1
  • N. B. Debattista
    • 1
  • N. B. Pappano
    • 1
  1. 1.Laboratory of Physical Chemistry, Department of ChemistrySan Luis National UniversitySan LuisArgentina

Personalised recommendations