Folia Microbiologica

, 54:409 | Cite as

Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor

  • M. Ramirez
  • J. M. Gómez
  • D. Cantero
  • J. Páca
  • M. Halecký
  • E. I. Kozliak
  • M. Sobotka


A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H2S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO4 2− accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98–99 % H2S removal efficiency for c of up to 66 ppmv and empty bed residence time ≤12–15 s. Removal of >98 % H2S was achieved under steady-state conditions, over the pH range of 0.44–7.30. Despite the accumulation of acidity and SO4 2− (up to 97 g/L), the system operated without inhibition.


Removal Efficiency Hydrogen Sulfide Dimethyl Sulfide Elimination Capacity Methyl Mercaptan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



inlet H2S concentration, g S/m3


outlet H2S concentration, g S/m3


elimination capacity, g S m−3 h−1


empty-bed residence time, min and/or s


load, g S m−3 h−1


parts per million by volume


polyurethane foam


air flow rate, m3/h


removal efficiency, %


bed volume, m3


  1. Aroca G., Urrutia H., Nuñez D., Oyarzún P., Arancibia A., Guerrero K.: Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron.J.Biotechnol. 10, 514–520 (2007).CrossRefGoogle Scholar
  2. Chen J.M., Jiang L.Y., Sha H.L.: Removal efficiency of high-concentration H2S in a pilot-scale biotrickling filter. Environ.Technol. 27, 759–766 (2006).CrossRefPubMedGoogle Scholar
  3. Cho K.S., Hirai M., Shoda M.: Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J.Ferment.Bioeng. 73, 46–50 (1992).CrossRefGoogle Scholar
  4. Chung Y.C., Huang C., Tseng C.P.: Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. J.Biotechnol. 52, 31–38 (1996).CrossRefGoogle Scholar
  5. Clesceri L.S., Greenberg A.E., Trussell R.R.: APHA, AWWA, WEF Standard Methods for the Examination of Water and Wastewater. E. Turbidimetric Method 4500 — SO4 2−, 4207–4208 (1989).Google Scholar
  6. Devinny J.S., Deshusses M.A., Webster T.S.: Biofiltration for Air Pollution Control. CRC Press, Boca Raton (FLA) 1999.Google Scholar
  7. Jin Y., Veiga M.C., Kennes C.: Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnol.Bioeng. 92, 462–471 (2005).CrossRefPubMedGoogle Scholar
  8. Lee E.Y., Cho K.-S., Ryu H.W.: Simultaneous removal of H2S and NH3 in biofilter inoculated with Acidithiobacillus thiooxidans TAS. J.Biosci.Bioeng. 99, 611–615 (2005).CrossRefPubMedGoogle Scholar
  9. Lee E.Y., Lee N.Y., Cho K.S., Ryu H.W.: Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J.Biosci. Bioeng. 101, 309–314 (2006).CrossRefPubMedGoogle Scholar
  10. de Ory I., Romero L.E., Cantero D.: Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti. Proc.Biochem. 39, 547–555 (2004).CrossRefGoogle Scholar
  11. Ruokojärvi A., Ruuskanen J., Martikainen P.J., Olkkonen M.: Oxidation of gas mixtures containing dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter. J.Air Waste Manag.Assoc. 51, 11–16 (2001).PubMedGoogle Scholar
  12. Sercu B., Van Langenhove H., Nuñez D., Aroca G., Verstraete W.: Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnol.Bioeng. 90, 259–269 (2005).CrossRefPubMedGoogle Scholar
  13. Shinabe K., Oketani S., Ochi T., Matsumura M.: Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS1 isolated from a carrier-packed biological deodorization system. J.Ferment.Bioeng. 80, 592–598 (1995).CrossRefGoogle Scholar
  14. Silverman M.P., Lundgren D.G.: Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J.Bacteriol. 77, 642–647 (1959).CrossRefPubMedGoogle Scholar
  15. Tanji Y., Kanagawa T., Mikami E.: Removal of dimethyl sulfide, methyl mercaptan, and hydrogen sulfide by immobilized Thiobacillus thioparus TK-m. J.Ferm.Bioeng. 67, 280–285 (1989).CrossRefGoogle Scholar
  16. Wani A.H., Lau A.K., Branion R.M.R.: Biofiltration control of pulping odors — hydrogen sulfide: performance, macrokinetics and coexistence effects of organo-sulfur species. J.Chem.Technol.Biotechnol. 74, 9–16 (1999).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2009

Authors and Affiliations

  • M. Ramirez
    • 1
  • J. M. Gómez
    • 1
  • D. Cantero
    • 1
  • J. Páca
    • 2
  • M. Halecký
    • 2
  • E. I. Kozliak
    • 3
  • M. Sobotka
    • 4
  1. 1.Department of Chemical Engineering, Food Technology and Environmental Technologies, Faculty of SciencesUniversity of CádizCádizSpain
  2. 2.Department of Fermentation Chemistry and BioengineeringInstitute of Chemical TechnologyPragueCzech Republic
  3. 3.Department of ChemistryUniversity of North DakotaGrand ForksUSA
  4. 4.Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i.PragueCzech Republic

Personalised recommendations