Advertisement

Folia Microbiologica

, 54:59 | Cite as

Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes

  • J. M. Barrasa
  • A. T. Martínez
  • M. J. MartínezEmail author
Article

Abstract

Thirty wood-rotting basidiomycetes, most of them causing white rot in wood, were isolated from fruiting bodies growing on decaying wood from the Sierra de Ayllón (Spain). The fungi were identified on the basis of their morphological characteristics and compared for their ability to decolorize Reactive Black 5 and Reactive Blue 38 (as model of azo and phthalocyanine type dyes, respectively) at 75 and 150 mg/L. Only eighteen fungal strains were able to grow on agar plates in the presence of the dyes and only three species (Calocera cornea, Lopharia spadicea, Polyporus alveolaris) decolorized efficiently both dyes at both concentrations. The ligninolytic activities, involved in decolorization dyes (laccases, lignin peroxidases, Mn-oxidizing peroxidases), were followed in glucose basal medium in the presence of enzyme inducers. The results indicate a high variability of the ligninolytic system within white-rot basidiomycetes. These fungal species and their enzymes can represent new alternatives for the study of new biological systems to degrade aromatic compounds causing environmental problems.

Keywords

Fruit Body Lignin Degradation Lignin Peroxidase Ligninolytic Enzyme Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

LAC(s)

laccase(s)

LiP(s)

lignin peroxidase(s)

MnP(s)

Mn-oxidizing peroxidase(s)

MEA

malt-extract agar

RB5

Reactive Black (dye; see formula)

RB38

Reactive Blue (dye; see formula)

VP

versatile peroxidase

References

  1. Aust S.A.: Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb.Ecol. 20, 197–209 (1990).CrossRefGoogle Scholar
  2. Blanchette R.A.: Screening wood decayed by white rot fungi for preferential lignin degradation. Appl.Environ.Microbiol. 48, 647–653 (1984).PubMedGoogle Scholar
  3. Blanco M.N.: Estudio taxonómico, corológico y ecológico de los Aphyllophorales s.l. (Basidiomycotina) del Parque Natural de Monfragiie (Extremadura). Soc.Catalana Micol. 4, 1–186 (1991).Google Scholar
  4. Blanco M.N., Moreno G.: Contribución al estudio de los hongos que fructifican en el melojar (Quercus pyrenaica) de Majaelrayo. Bol.Soc.Micol.Madrid 11, 39–58 (1986).Google Scholar
  5. Bollag J.M., Leonowicz A.: Comparative studies of extracellular fungal laccases. Appl.Environ.Microbiol. 48, 849–854 (1984).PubMedGoogle Scholar
  6. Bumpus J.A., Tien M., Wright D., Aust S.D.: Oxidation of persistent environmental pollutants by a white rot fungus. Science 228, 1434–1436 (1985).PubMedCrossRefGoogle Scholar
  7. Buswell A., Odier E.: Lignin biodegradation. Crit.Rev.Biotechnol. 6, 1–60(1987).CrossRefGoogle Scholar
  8. Cajthaml T., Erbanová P., Kollmann A., Novotný Č., Šašek V., Mougin C: Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol. 53, 289–294 (2008).CrossRefGoogle Scholar
  9. Casieri L., Varese G.C., Anastasi A., Prigione V., Svobodová K., Filipello Marchisio V., Novotny Č.: Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol. 53,44–52 (2008).CrossRefGoogle Scholar
  10. Checa J., Moreno G.: Contribución al estudio de los hongos que fructifican sobre Fagus sylvatica L. en el Puerto de la Quesera (Segovia). Bol.Soc.Micol.Castellana 7, 105–134 (1982).Google Scholar
  11. Collins P.J., Dobson A.D.W.: Regulation of laccase gene transcription in Trametes versicolor. Appl.Environ.Microbiol. 63, 3444–3450 (1997).PubMedGoogle Scholar
  12. Dhouib A., Hamza M., Zouari H., Mechichi T., Hmidi R., Labat M., Martínez M.J., Sayadi S.: Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J.Microb.Biotechnol. 21, 1415–1423 (2005).CrossRefGoogle Scholar
  13. Eriksson J., Ryvarden L.: The Corticiaceae of North Europe. Fungiflora 4, 549–886 (1976).Google Scholar
  14. Gilbertson R.L.: Wood-rotting fungi of North America. Mycologia 72, 1–49 (1980).CrossRefGoogle Scholar
  15. Guillén F., Martínez A.T., Martínez M.J.: Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur.J.Biochem. 209, 603–611 (1992).PubMedCrossRefGoogle Scholar
  16. Hatakka A.: Lignin-modifying enzymes from selected white-rot fungi — production and role in lignin degradation. FEMS Microbiol.Rev. 13, 125–135 (1994).CrossRefGoogle Scholar
  17. Heinfling A., Bergbauer M., Szewzyk U.: Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl.Microbiol.Biotechnol. 48, 261–266 (1997).CrossRefGoogle Scholar
  18. Higuchi T.: Lignin biochemistry: biosynthesis and biodegradation. Wood Sci.Technol. 24,23–63 (1990).CrossRefGoogle Scholar
  19. Jaouani A., Guillen F., Penninckx M.J., Martínez A.T., Martínez M.J.: Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb.Technol. 36, 478–486 (2005).CrossRefGoogle Scholar
  20. Jarosz-Wilkolazka A., Kochmanska-Rdest J., Malarczyk E., Wardas W., Leonowicz A.: Fungi and their ability to decolorize azo and anthraquinonic dyes. Enzyme Microb.Technol. 30, 566–572 (2002).CrossRefGoogle Scholar
  21. Kapdan I., Kargi F., McMullan G., Marchant R.: Comparison of white-rot fungi cultures for decolorization of textile dyestuffs. BioprocEng. 22, 347–351 (2000).CrossRefGoogle Scholar
  22. Kirby N., Marchant R., McMullan G.: Decolorization of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol.Lett. 188, 93–96 (2000).PubMedCrossRefGoogle Scholar
  23. Kirk P.M., Cannon P.F., David J.C., Stalpers J.A.: Ainsworth and Bisby’s Dictionary of the Fungi, 9th ed. CAB International, Wallingford 2001.Google Scholar
  24. Knapp J.S., Newby P.S., Reece L.P.: Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb.Technol. 17, 664–668 (1995).CrossRefGoogle Scholar
  25. Levin L., Papinutti L., Forchiassin F.: Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Biores.Technol. 94, 169–176 (2004).CrossRefGoogle Scholar
  26. Lomascolo A., Record E., Herpoel-Gimbert I., Delattre M., Robert J.L., Georis J., Dauvrin T., Sigoillot J.C., Asther M.: Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J.Appl.Microbiol. 94, 618–624 (2003).PubMedCrossRefGoogle Scholar
  27. Martínez A.T.: Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb.Technol. 30, 425–444 (2002).CrossRefGoogle Scholar
  28. Martínez M.J., Ruiz-Dueñas F.J., Guillén F., Martínez A.T.: Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur.J.Biochem. 237, 424–432 (1996).PubMedCrossRefGoogle Scholar
  29. McMullan G., Meehan C, Conneely A., Kirby N., Robinson T., Nigam P., Banat I.M., Marchant R., Smyth W.E.: Microbial decolorization and degradation of textile dyes. Appl.Microbiol.Biotechnol. 56, 81–87 (2001).PubMedCrossRefGoogle Scholar
  30. Moreira M.T., Mielgo I., Feuoo G., Lema J.M.: Evaluation of different fungal strains in the decolorization of synthetic dyes. Biotechnol.Lett. 22, 1499–1503 (2000).CrossRefGoogle Scholar
  31. Muñoz C, Guillén F., Martínez A.T., Martínez M.J.: Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and participation in activation of molecular oxygen and Mn2+ oxidation. Appl.Environ.Microbiol. 63, 2166–2174 (1997).PubMedGoogle Scholar
  32. Paszczyński A., Crawford R.L.: Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol.Progr. 11, 368–379 (1995).CrossRefGoogle Scholar
  33. Peláez F., Martínez M.J., Martínez A.T.: Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol.Res. 99, 37–42 (1995).CrossRefGoogle Scholar
  34. Pérez J., Jeffries T.W.: Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl.Environ.Microbiol. 58, 2402–2409 (1992).Google Scholar
  35. Pointing S.B.: Feasibility of bioremediation by white-rot fungi. Appl.Microbiol.Biotechnol. 57, 20–33 (2001).PubMedCrossRefGoogle Scholar
  36. Rayner A.D.M., Boddy L.: Fungal Decomposition of Wood: Its Biology and Ecology (John Wiley & Sons, Eds). Wiley-Interscience Publication, Chichester 1988.Google Scholar
  37. Reddy C.A.: The potential for white-rot fungi in the treatment of pollutants. Curr.Opin.Motechnol. 6, 320–328 (1995).CrossRefGoogle Scholar
  38. Rrvas-Martínez S.: Mapas de las series de vegetación 1:400.000 de Españay memoria. ICONA, Série Técnica (1987).Google Scholar
  39. Ryvarden L., Gilbertson R.L.: European polypores. Fungiflora 2, 394–743 (1994).Google Scholar
  40. Šašek V., Novotný Č., Vampola P.: Screening for efficient organopollutant fungal degraders by decolorization. Czech Mycol. 50, 303–311(1998).Google Scholar
  41. Schoemaker H.E.: On the chemistry of lignin degradation. Rec.Trav.Chim.Pays-Bas 109, 255–272 (1990).Google Scholar
  42. Seifert K.A.: Decay of wood by the Dacrymycetales. Mycologia 75, 1011–1018 (1983).CrossRefGoogle Scholar
  43. Snajdr J., Baldrian P.: Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol. 52, 498–502 (2007).CrossRefGoogle Scholar
  44. Spadaro J.T., Gold M.H., Renganathan V.: Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl.Environ.Microbiol. 58, 2397–2404 (1992).PubMedGoogle Scholar
  45. Stalpers J.A.: Identification of wood-inhabiting Aphyllophorales in pure culture. Stud.Mycol. 16, 1–48 (1978).Google Scholar
  46. Šušla M., Novotný Č, Erbanová P., Svobodová K.: Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. Folia Microbiol. 53, 479–485 (2008).CrossRefGoogle Scholar
  47. Swamy J., Ramsay J.A.: The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb.Technol. 24, 130–137 (1999).CrossRefGoogle Scholar
  48. Tien M., Kirk T.K.: Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161,238–249 (1988).CrossRefGoogle Scholar
  49. Wariishi H., Kileswaran L.A., Gold M.H.: Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27, 5365–5370 (1988).PubMedCrossRefGoogle Scholar
  50. Wesenberg D., Buchon F., Agathos S.N.: Degradation of dye-containing textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotechnol.Lett. 24, 983–989 (2002).CrossRefGoogle Scholar
  51. Wzhang F.M., Knapp J.S., Tapley K.N.: Development of bioreactor systems for decolorization of Orange II using white rot fungus. Enzyme Microb.Technol. 24, 48–53 (1999).CrossRefGoogle Scholar
  52. Zouari-Mechichi H., Mechichi T., Dhouib A., Sayadi S., Martínez A.T., Martínez M.J.: Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb.Technol. 39,141–48 (2006).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2009

Authors and Affiliations

  • J. M. Barrasa
    • 1
  • A. T. Martínez
    • 2
  • M. J. Martínez
    • 2
    Email author
  1. 1.Departamento de Biología Vegetal, Facultad de BiologíaUniversidad de AlcaláMadridSpain
  2. 2.Centro de Investigaciones BiológicasConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations