Folia Microbiologica

, Volume 53, Issue 5, pp 395–401

Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466

  • M. Koběrská
  • J. Kopecký
  • J. Olšovská
  • M. Jelínková
  • D. Ulanova
  • P. Man
  • M. Flieger
  • J. Janata
Papers

Abstract

A cosmid bearing an insert of 38 217 bp covering the gene cluster and its flanking regions of type strain Streptomyces lincolnensis ATCC 25466 was sequenced. Two relatively extensive sequence changes and several hundred point mutations were identified if compared with the previously published sequence of the lincomycin (Lin) industrial strain S. lincolnensis 78-11. Analysis of the cluster-flanking regions revealed its localization within the genome of the ATCC 25466 strain. The cluster-bearing cosmid was integrated into the chromosome of Lin non-producing strains S. coelicolor CH 999 and S. coelicolor M 145. The modified strains heterologously produced Lin but the level dropped to ≈1–3 % of the production in the ATCC 25466 strain.

Abbreviations

ABC

ATP-binding cassette

Mtl

methylthiolincosamide

l-Dop

3,4-dihydroxy-L-phenylalanine

Ndl

N-demethyllincomycin

int

integrase gene of phage φC31

NDLS

N-demethyllincomycin synthetase

Lin

lincomycin

PCR

polymerase chain reaction

lmb

Lin biosynthetic genes

Ppl

4-propyl-L-proline

MS

mass spectrometry

UPLC

ultra performance liquid chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl.Acids Res. 25, 3389–3402 (1997).PubMedCrossRefGoogle Scholar
  2. Baltz R.H.: Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol. 6, 76–83 (1998).PubMedCrossRefGoogle Scholar
  3. Čermák L., Novotná J., Ságová-Marečková M., Kopecký J., Najmanová L., Janata J.: Hybridization analysis and mapping of the celesticetin gene cluster revealed genes shared with lincomycin biosynthesis. Folia Microbiol. 52, 457–462 (2007).CrossRefGoogle Scholar
  4. Chung S.T., Manis J.J., Mcwethy J., Patt T.E., Witz D.F., Wolf H.J., Wovcha M.G.: Fermentation, biosynthesis and molecular genetics of lincomycin. Drugs Pharm.Sci. 82, 165–186 (1997).Google Scholar
  5. Combes P., Till R., Bee S., Smith M.C.: The Streptomyces genome contains multiple pseudo-attB sites for the (φ)C31-encoded sitespecific recombination system. J.Bacteriol. 184, 5746–5752 (2002).PubMedCrossRefGoogle Scholar
  6. Eustáquio A.S., Gust B., Galm U., Li S.M., Chater K.F., Heide L.: Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl.Environ.Microbiol. 71, 2452–2459 (2005).PubMedCrossRefGoogle Scholar
  7. Flett F., Mersinias V., Smith C.P.: High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol.Lett. 155, 223–229 (1997).PubMedCrossRefGoogle Scholar
  8. Gust B., Chandra G., Jakimowicz D., Yuqing T., Bruton C.J., Chater K.F.: γ-Red-mediated genetic manipulation of antibioticproducing Streptomyces. Adv.Appl.Microbiol. 54, 107–128 (2004).PubMedCrossRefGoogle Scholar
  9. Hu Y., Phelan V., Ntai I., Farnet C.M., Zazopoulos E., Bachmann B.O.: Benzodiazepine biosynthesis in Streptomyces refuineus. Chem.Biol. 14, 691–701 (2007).PubMedCrossRefGoogle Scholar
  10. Janata J., Najmanová L., Novotná J., Holá K., Felsberg J., Spížek J.: Putative lmbI and lmbH genes form a single lmbIH ORF in Streptomyces lincolnensis type strain ATCC 25466. Antonie van Leeuwenhoek 79, 277–284 (2001).PubMedCrossRefGoogle Scholar
  11. Kawasaki T., Hayashi Y., Kuzuyama T., Furihata K., Itoh N., Seto H., Dairi T.: Biosynthesis of a natural polyketide-isoprenoid hybrid compound, furaquinocin A: identification and heterologous expression of the gene cluster. J.Bacteriol. 188, 1236–1244 (2006).PubMedCrossRefGoogle Scholar
  12. Kieser H.M., Buttner M.J., Chater K.F., Hopwood D.A.: Practical Streptomyces Genetics. John Innes Foundation, Norwich (UK) 2000.Google Scholar
  13. Kuo M.S., Yurek D.A., Coats J.H., Li G.P.: Isolation and identification of 7,8-didemethyl-8-hydroxy-5-deazariboflavin, an unusual cosynthetic factor in streptomycetes, from Streptomyces lincolnensis. J.Antibiot.(Tokyo) 42, 475–478 (1989).Google Scholar
  14. Mcdaniel R., Ebert-Khosla S., Hopwood D.A., Khosla C.: Engineered biosynthesis of novel polyketides. Science 262, 1546–1550 (1993).PubMedCrossRefGoogle Scholar
  15. Neusser D., Schmidt H., Spíž’ek J., Novotná J., Peschke U., Kaschabeck S., Tichý P., Piepersberg W.: The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch.Microbiol. 169, 322–332 (1998).PubMedCrossRefGoogle Scholar
  16. Novotná G., Janata J.: A new evolutionary variant of the streptogramin A resistance protein, Vga(A)LC, from Staphylococcus haemolyticus with shifted substrate specificity towards lincosamides. Antimicrob.Agents Chemother. 50, 4070–4076 (2006).PubMedCrossRefGoogle Scholar
  17. Novotná J., Honzátko A., Bednář P., Kopecký J., Janata J., Spížek J.: L-3,4-Dihydroxyphenylalanine — extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur.J.Biochem. 271, 3678–3683 (2004).PubMedCrossRefGoogle Scholar
  18. Olšovská J., Jelínková M., Man P., Koběrská M., Janata J., Flieger M.: High-throughput quantification of lincomycin traces in fermentation broth of genetically modified Streptomyces spp. Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography with UV detection. J.Chromatogr.A 1139, 214–220 (2007).PubMedCrossRefGoogle Scholar
  19. Onaka H., Taniguchi S., Igarashi Y., Furumai T.: Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J.Antibiot.(Tokyo) 55, 1063–1071 (2002).Google Scholar
  20. Penn J., Li X., Whiting A., Latif M., Gibbon T., Silva C.J., Brian P., Davies J., Miao V., Wrigley S.K., Baltz R.H.: Heterologous production of daptomycin in Streptomyces lividans. J.Ind.Microbiol.Biotechnol. 33, 121–128 (2006).PubMedCrossRefGoogle Scholar
  21. Peschke U., Schmidt H., Zhang H.Z., Piepersberg W.: Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol.Microbiol. 16, 1137–1156 (1995).PubMedCrossRefGoogle Scholar
  22. Velasco A., Acebo P., Gomez A., Schleissner C., Rodriguez P., Aparicio T., Conde S., Munoz R., De La Calle F., Garcia J.L., Sanchez-Puelles J.M.: Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Mol.Microbiol. 56, 144–154 (2005).PubMedCrossRefGoogle Scholar
  23. Widdick D.A., Dodd H.M., Barraille P., White J., Stein T.H., Chater K.F., Gasson M.J., Bibb M.J.: Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus DSM 40005. Proc.Nat.Acad.Sci.USA 100, 4316–4321 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  • M. Koběrská
    • 1
  • J. Kopecký
    • 1
  • J. Olšovská
    • 1
  • M. Jelínková
    • 1
  • D. Ulanova
    • 1
  • P. Man
    • 1
  • M. Flieger
    • 1
  • J. Janata
    • 1
  1. 1.Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i.PragueCzech Republic

Personalised recommendations