Folia Microbiologica

, Volume 53, Issue 5, pp 378–394 | Cite as

Beneficial health effects of milk and fermented dairy products — Review

  • L. EbringerEmail author
  • M. Ferenčík
  • J. Krajčovič


Milk is a complex physiological liquid that simultaneously provides nutrients and bioactive components that facilitate the successful postnatal adaptation of the newborn infant by stimulating cellular growth and digestive maturation, the establishment of symbiotic microflora, and the development of gut-associated lymphoid tissues. The number, the potency, and the importance of bioactive compounds in milk and especially in fermented milk products are probably greater than previously thought. They include certain vitamins, specific proteins, bioactive peptides, oligosaccharides, organic (including fatty) acids. Some of them are normal milk components, others emerge during digestive or fermentation processes. Fermented dairy products and probiotic bacteria decrease the absorption of cholesterol. Whey proteins, medium-chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy food on body fat and body mass. There has been growing evidence of the role that dairy proteins play in the regulation of satiety, food intake and obesity-related metabolic disorders. Milk proteins, peptides, probiotic lactic acid bacteria, calcium and other minerals can significantly reduce blood pressure. Milk fat contains a number of components having functional properties. Sphingolipids and their active metabolites may exert antimicrobial effects either directly or upon digestion.


Conjugated Linoleic Acid Human Milk Whey Protein Milk Protein Probiotic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



arachidonic acid




angiotensin I-converting enzyme


long-chain oligounsaturated fatty acid(s)


conjugated linoleic acid


low-density lipoprotein


docosahexaenoic acid




epidermal growth factor


monocyte chemotactic protein


eicosapentaenic acid


macrophage colony-stimulating factor


fatty acid(s)


medium-chain triglycerides


free fatty acid(s)


milk fat globule membrane


gut-associated lymphoid tissue


macrophage inflammatory protein


granulocyte colony-stimulating factor


nerve growth factor


gastrointestinal tract


natural killer


human α-lactalbumin made lethal to tumor cells


secretory immunoglobulin A


high-density lipoprotein


Regulated upon Activated Normal T-Expressed and presumably Secreted chemokine






transforming growth factor


insulin-like growth factor


Toll-like receptor




tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agerholm-Larsen L., Raben A., Haulrik N., Hansen A.S., Manders M., Astrup A.: Effects of 8 weeks intake of probiotic milk products on risk factors for cardiovascular diseases. Eur.J.Clin. Nutr.54, 288–297 (2000).PubMedCrossRefGoogle Scholar
  2. Aimutis W.R.: Bioactive properties of milk proteins with particular focus on anticariogenesis. J.Nutr.134, 989S–995S (2004).PubMedGoogle Scholar
  3. Alférez M.J.M., Barrionuevo M., López Aliagua I., Sans Sampelayo M.R., Lisbona F., Campos M.S.: The digestive utilization of goat and cow milk fat in malabsorption syndrome. J.Dairy Sci.68, 451–461 (2001).Google Scholar
  4. Armogida S.A., Yannaras N.M., Melton A.L., Srivastava M.D.: Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc.25, 297–304 (2004).PubMedGoogle Scholar
  5. Babayan V.K.: Medium chain length fatty acids esters and their medical and nutritional applications. J.Am.Oil Chem.Soc.59, 49A–52A (1981).CrossRefGoogle Scholar
  6. Beaulieu J., Dupont C., Lemieux P.: Whey proteins and peptides: beneficial effects on immune health. Therapy3, 69–78 (2006).CrossRefGoogle Scholar
  7. Bellamy W.R., Yamauchi K., Wakabayashi H., Takase M., Shimamura S., Tomita M.: Antifungal properties of lactoferricin, a peptide derived from the N-terminal region of bovine lactoferrin. Lett.Appl.Microbol.18, 230–233 (1994).CrossRefGoogle Scholar
  8. Bergendi Ľ., Beneš L., Ďuračková Z., Ferenčík M.: Chemistry, physiology and pathology of free radicals. Life Sci.65, 1865–1874 (1999).PubMedCrossRefGoogle Scholar
  9. Bertolami M.C., Faludi A.A., Batlouni M.: Evolution of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia. Eur.J.Clin. Nutr.53, 97–101 (1999).PubMedCrossRefGoogle Scholar
  10. Biancone L., Monteleone I., Blanco G.D., Vavassori P., Pallone F.: Resident bacterial flora and immune system. Digest.Liver Dis.34, 537–543 (2002).CrossRefGoogle Scholar
  11. Böttcher M.F., Jenmalm M.C., Björkstén B.: Cytokine, chemokine and secretory IgA level in human milk in relation to atopic disease and IgA production in infants. Pediatr.Allergy Immunol.14, 35–41 (2003).PubMedCrossRefGoogle Scholar
  12. Bounous G., Gold P.: The biological activity of undenatured dietary whey proteins: role of glutathione. Clin.Invest.Med.14, 296–309 (1991).PubMedGoogle Scholar
  13. Brandsch M., Brust P., Neubert K., Ermisch A.: β-Casomorphins — chemical signals of intestinal transport systems, pp. 207–219 in V. Brantl, H. Teschemacher (Eds): β-Casomorphins and Related Peptides: Recent Developments. VCH, Weinheim (Germany) 1994.Google Scholar
  14. Brody E.P.: Biological activities of bovine glycomacropeptide. Brit.J.Nutr.84(Suppl. 1), S39–S46 (2000).PubMedGoogle Scholar
  15. Brown E.M.: Interaction of β-lactoglobulin and α-lactalbumin with lipids: a review. J.Dairy Sci.67, 713–722 (1984).Google Scholar
  16. Calligaris S., Manzocco L., Anese M., Nicoli M.C.: Effect of heat-treatment on the antioxidant and peroxidant activity of milk. Internat.Dairy J.14, 421–427 (2004).CrossRefGoogle Scholar
  17. Cho Y., Batt C.A., Sawyer L.: Probing the retinol-binding site of bovine β-lactoglobulin. J.Biol.Chem.269, 1102–1107 (1994).Google Scholar
  18. Clancy R.: Immunobiotics and the probiotic evolution. FEMS Immunol.Med.Microb.38, 9–12 (2003).CrossRefGoogle Scholar
  19. Clare D.A., Swaisgood H.E.: Bioactive milk peptides: a prospectus. J.Dairy Sci.83, 1187–1195 (2000).PubMedGoogle Scholar
  20. De Lorgelil M., Renaud S., Mamelle N., Salen P., Martin J.L., Monjaud I., Guidollet J., Touboul P., Delaye J.: Mediterranean α-linoleic acid rich in secondary prevention of coronary heart disease. Lancet343, 1454–1459 (1994).CrossRefGoogle Scholar
  21. De Witt J.N., van Hooydonk A.C.M.: Structure, function and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk Dairy J.50, 227–244 (1996).Google Scholar
  22. Dhiman T.R., Nam S.-H.N., Ure A.L.: Factors affecting conjugated linoleic acid content in milk and meat. Crit.Rev.Food Sci.Nutr.45, 463–482 (2005).PubMedCrossRefGoogle Scholar
  23. Donovan S.M.: Role of human milk components in gastrointestinal development: current knowledge and future needs. J.Pediatr.149(Suppl. 1), S49–S61 (2006).Google Scholar
  24. Dunshea F.R., Ostrowska E., Ferrari J.M., Gill H.S.: Dairy proteins and the regulation of satiety and obesity. Austral.J.Exper. Agric.47, 1051–1058 (2007).CrossRefGoogle Scholar
  25. Elfstrand L., Mansson H.L., Paulssson M., Hyberg L., Akisson B.: Immunoglobulins, growth factors and growth hormone in bovine colostrum and effects of processing. Internat.Dairy J.12, 879–887 (2002).CrossRefGoogle Scholar
  26. Farnworth E.R.: Kefir — a complex probiotic. Food Sci.Technol.Bull.2, 1–17 (2005).Google Scholar
  27. Fell J.M., Paintin M., Arnaud-Battandier F., Beattie R.M., Hollis A., Kitching P., Donnet Hughes A., Macdonald T.T., Walker Smith J.A: Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in pediatric Crohn’s disease. Aliment.Pharmacol.Ther.14, 281–289 (2000).PubMedCrossRefGoogle Scholar
  28. Ferenčík M., Ebringer L.: Probiotics, allergy and asthma. (In Slovak) Alergie5, 224–230 (2003)Google Scholar
  29. Field C.J.: The immunological components of human milk and their effect on immune development in infants. J.Nutr.135, 2–4 (2005).Google Scholar
  30. Filipčík P., Cente M., Ferenčík M., Hulín I., Novák M.: The role of oxidative stress in the pathogenesis of Alzheimer’s disease. Bratisl.Med.J.107, 384–394 (2006).Google Scholar
  31. Fitzgerald R.K., Murray B.A.: Bioactive peptides and lactic farmentations. Internat.J.Dairy Technol.59, 118–125 (2006).CrossRefGoogle Scholar
  32. Forssén K.M., Jägerstadt M.I., Wigertz K., Witthoft C.N.: Folates and dairy products: a critical update. J.Am.Coll.Nutr.19, 100S–110S (2000).PubMedGoogle Scholar
  33. Fox P.F.: Indigenous enzymes in milk, pp. 447–467 in P.F. Fox, P.L.H. Sweeney (Eds): Advanced Dairy Chemistry, Vol. 1, Proteins. Kluwer Academic-Plenum Publishers, New York 2003.Google Scholar
  34. Friel J.K., Martin S.M., Langdon M., Herzberg G.R., Buettner G.R.: Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr.Res.52, 612–618 (2002).CrossRefGoogle Scholar
  35. Galdeano C.M., Perdigon G.: The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin.Vacc.Immunol.13, 219–226 (2006).CrossRefGoogle Scholar
  36. Garcia Unciti M.: Therapeutic utility of the medium-chain triglycerides. Ketogenic diets in infantile epilepsy. (In Italian) Nutr.Clin.16, 7–35 (1996).Google Scholar
  37. Garofalo R.P., Goldman A.S.: Cytokines, chemokines, and colony-stimulating factors in human milk: the 1997 update. Neonatology74, 134–142 (1998).CrossRefGoogle Scholar
  38. German J.B.: Butyric acid — a role in cancer prevention. Nutr.Bull.24, 293–299 (1999).CrossRefGoogle Scholar
  39. German J.B., Dillard C.J.: Saturated fats: what dietary intake? Am.J.Clin.Nutr.80, 550–559 (2004).PubMedGoogle Scholar
  40. German J.B., Dillard C.J.: Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit.Rev.Food Sci.Nutr.46, 57–92 (2006).PubMedCrossRefGoogle Scholar
  41. Gibson G.R., Probert H.M., Van Los J., Rastall R.A., Roberfroid M.B.: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr.Res.Rev.17, 259–275 (2004).CrossRefPubMedGoogle Scholar
  42. Gill H.S., Guarner F.: Probiotics and human health: a clinical perspective. Postgrad.Med.J.80, 516–526 (2004).PubMedCrossRefGoogle Scholar
  43. Gilliland S.E., Nelson C.R., Maxwell C.: Assimilation of cholesterol by Lactobacillus acidophilus. Appl.Environ.Microbiol.49, 377–381 (1985).PubMedGoogle Scholar
  44. Grappin R., Beuvier E.: Possible implications of milk pasteurization on the manufacture and sensory quality of ripened cheese. Internat.Dairy J.7, 751–761 (1997).CrossRefGoogle Scholar
  45. Grundy S.M.: Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am.J.Clin.Nutr.60, 986S–990S (1994).PubMedGoogle Scholar
  46. Guarner F., Schaafsma G.J.: Probiotics. Internat.J.Food Microbiol.39, 237–238 (1998).CrossRefGoogle Scholar
  47. Gustafsson L., Biers C., Hallgren O., Mossberg A.K., Pettersson J., Fischer W., Aronsson A., Svanborg C.: HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy. J.Nutr.135, 1299–1303 (2005).PubMedGoogle Scholar
  48. Hachelaf W., Boukrelda M., Coquin P., Desjeux J.F., Boudraa G., Touhami M.: Digestibility of goat milk fat in children with a digestive origin malnutrition. (In French) Lait73, 593–599 (1993).CrossRefGoogle Scholar
  49. Halliwell B., Gutteridge M.C.: Free Radicals in Biology and Medicine, 2nd ed. Clarendon Press, Oxford (UK) 1989.Google Scholar
  50. Harrison R.: Structure and function of xanthin oxidoreductase: where we are now? Free Rad.Biol.Med.33, 774–797 (2002).PubMedCrossRefGoogle Scholar
  51. Hartmann R., Meisel H.: Food-derived peptides with biological activity: from research to food applications. Curr.Opin.Biotechnol.18, 163–169 (2007).PubMedCrossRefGoogle Scholar
  52. Haug A., Høstmark A.T., Harstad O.M.: Bovine milk in human nutrition — a review. Lipids Health Dis.6, 25 (2007).PubMedCrossRefGoogle Scholar
  53. Hayashida K., Kaneko T., Takeuchi T., Shimizu H., Ando K., Harada E.: Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. J.Vet.Med.Sci.66, 149–154 (2004).PubMedCrossRefGoogle Scholar
  54. Hernández-Ledesma B., Amigo L., Recio I., Bartolomé B.: ACE-inhibitory and radical-scavenging activity of peptides derived from β-lactoglobulin f (19–25). Interactions with ascorbic acid. J.Agric.Food Chem.55, 3392–3397 (2007).PubMedCrossRefGoogle Scholar
  55. Huth P.J., Dirienzo D.B., Miller G.D.: Major specific advances with dairy foods in nutrition and health. J.Dairy Sci.89, 1207–1221 (2006).PubMedGoogle Scholar
  56. Iigo M., Kuhara T., Ushida Y., Sekine K., Moore M.A., Tsuda H.: Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin.Exp.Metastasis17, 35–40 (1999).PubMedCrossRefGoogle Scholar
  57. Isaacs C.E.: Human milk inactivates pathogen individually, additively, and synergistically. J.Nutr.135, 1286–1288 (2005).PubMedGoogle Scholar
  58. Isawa M., Kaito M., Ikoma J.: Lactoferrin inhibits hepatitis C virus in chronic hepatitis C patients with high viral loads and HVC genotype 1b. Am.J.Gastroent.97, 766–767 (2002).CrossRefGoogle Scholar
  59. Isolauri E., Sutas Y., Kankaapää P., Arvilommi H., Salminen S.: Probiotics: effect on immunity. Am.J.Clin.Nutr.73(Suppl.) 444S–450S (2001).PubMedGoogle Scholar
  60. Jaziri M., Migliore-Samour D., Casablanca-Pigred M.R., Keddat K., Morgat J.L., Jolles P.: Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulatory peptides from human milk proteins. Biochim.Biophys.Acta1160, 251–261 (1992).PubMedGoogle Scholar
  61. Jenssen H.: Anti-herpes simplex virus activity of lactoferrin/lactoferricin — an example of antiviral activity of antimicrobial protein/peptide. Cell.Mol.Life Sci.24, 3302–3313 (2005).Google Scholar
  62. Kaito M., Iwasa M., Fujita N., Kobayashi Y., Kojima Y., Ikoma J., Imoto I., Adachi Y., Hamano H., Yamauchi K.: Effect of lactoferrin inpatients with chronic hepatitis C: combination therapy with interferon and ribavirin. J.Gastroent.Hepatol.22, 1984–1997 (2007).Google Scholar
  63. Kaizu H., Sasaki M., Nakajima H.: Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J.Dairy Sci.46, 2493–2499 (1993).CrossRefGoogle Scholar
  64. Kang S.H., Kim J.U., Imm J.Y., Oh S., Kim S.H.: The effects of dairy processes and storage on insulin-like growth factor-1 (IGF-1) content in milk and in model fortified dairy product. J.Dairy Sci.89, 402–409 (2006).PubMedGoogle Scholar
  65. Kepler C.R., Tove S.B.: Biohydrogenation of unsaturated fatty acids. J.Biol.Chem.242, 5682–5686 (1967).Google Scholar
  66. Khanal R.C., Olson K.C.: Factors affecting conjugated linoleic acid (CLA) content in milk, meat, and egg: a review. Pakistan J.Nutr.3, 82–98 (2004).Google Scholar
  67. Kiesling G., Schneider J., Jahreis G.: Long-term consumption of fermented dairy products over 6-months increases HDL cholesterol. Eur.J.Clin.Nutr.56, 843–849 (2002).CrossRefGoogle Scholar
  68. Kitts D.D., Yuan Y.V.: Caseinophosphopeptides and calcium bioavailability. Trends Food Sci.Technol.3, 31–35 (1992).CrossRefGoogle Scholar
  69. Koppová I., Lukáš F., Kopečný J.: Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen. Folia Microbiol.51, 291–293 (2006).CrossRefGoogle Scholar
  70. Korhonen H., Pihlanto A.: Bioactive peptides: production and functionality. Internat.Dairy J.16, 945–960 (2006).CrossRefGoogle Scholar
  71. Kullisaar T., Songisepp E., Mikelsaar M., Zilmer K., Vihalemm T., Zilmer M.: Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Brit.J.Nutr.90, 449–456 (2003).PubMedCrossRefGoogle Scholar
  72. Kverka M., Buriánová J., Lodinová-Žádníková R., Kocourková I., Cinová J. Tučková L., Tlaskalová-Hogenová H.: Cytokine profiling in human colostrum and milk by protein array. Clin.Chem.53, 955–962 (2007).PubMedCrossRefGoogle Scholar
  73. Lahov E., Regelson W.: Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem.Toxicol.34, 131–145 (1996).PubMedCrossRefGoogle Scholar
  74. Lerebours E., N’Djitoyap Ndam C., Lavoine A., Hellot M., Antoine J.M., Collin R.: YOGHURT and fermented-then-pasteurized milk: effects of short-term and long-term ingestion on lactose absorption and mucosal lactase activity in lactase-deficient subjects. Am.J.Clin.Nutr.49, 823–827 (1989).PubMedGoogle Scholar
  75. Ling M.Y., Yen C.L.: Antioxidative ability of lactic acid bacteria. J.Agric.Food Chem.47, 1460–1466 (1999).CrossRefGoogle Scholar
  76. Liu Q., Raina A., Smith M., Sayre L., Perry G.: Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Molec.Aspects Med.24, 305–313 (2003).CrossRefGoogle Scholar
  77. Ljungh A., Lan J., Yanagisawa N.: Isolation, selection and characteristics of Lactobacillus paracasei subsp. paracasei F16. Microb. Health Dis.3(Suppl.), 4–6 (2002).CrossRefGoogle Scholar
  78. Luhovyy B.L., Akhavan T., Anderson G.H.: Whey proteins in the regulation of food intake and satiety. J.Am.Coll.Nutr.26, 704S–712S (2007).PubMedGoogle Scholar
  79. Macfarlane S., Macfarlane G.T., Cummings J.H.: Review article: prebiotics in the gastrointestinal tract. Aliment.Pharmacol. Therap.24, 701–714 (2006).CrossRefGoogle Scholar
  80. Machnicki M., Zimecki M., Zagulski T.: Lactoferrin regulates the release of tumor necrosis factor-α and interleukin-6 in vivo. Internat. J.Exp.Pathol.74, 433–439 (1993).Google Scholar
  81. Macrae J., O’Reilly L., Morgan P.: Desirable characteristics of animal products from a human health perspectives. Livestock Prod.Sci.94, 95–103 (2005).CrossRefGoogle Scholar
  82. Maga E.A., Anderson G.B., Culler J.S., Smith W., Murray J.D.: Antimicrobial properties of human lysozyme transgenic mouse milk. J.Food Protect.62, 51–56 (1998).Google Scholar
  83. Malkoski M., Daspher S.G., O’Brien-Simpson N.M., Talbo G.H., Macris M., Cross K.J., Reynolds E.C.: Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob.Agents Chemother.45, 2309–2315 (2001).PubMedCrossRefGoogle Scholar
  84. Markus C.R., Olivier B., de Haan E.H.: Whey protein rich in α-lactalbumin increases the ration of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am.J.Clin.Nutr.75, 1051–1056 (2002).PubMedGoogle Scholar
  85. Matar C., Valdez J.C., Medina M., Rachid M., Perdigon G.: Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J.Dairy Res.68, 601–609 (2001).PubMedCrossRefGoogle Scholar
  86. McCann K.B., Shiell B.J., Michalski W.P., Lee A., Wan J., Roginski H., Coventry M.J.: Isolation and characterization of a novel antibacterial peptide from bovine αS1-casein. Internat.Dairy J.16, 316–323 (2006).CrossRefGoogle Scholar
  87. Mehra R., Marnila P., Korhonen M.: Milk immunoglobulins for health promotion. Internat.Dairy J.16, 1262–1272 (2006).CrossRefGoogle Scholar
  88. Meisel H.: Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers43, 118–128 (1997).CrossRefGoogle Scholar
  89. Meisel H.: Bioactive peptides from milk proteins: a perspective for consumers and producers. Austral.J.Dairy Technol.56, 83–92 (2001).Google Scholar
  90. Meisel H.: Biochemical properties of peptides encrypted in bovine milk proteins. Curr.Med.Chem.12, 1905–1919 (2005).PubMedCrossRefGoogle Scholar
  91. Meisel H., Bockelmann W.: Bioactive peptides encrypted in milk proteins: proteolytic activation and tropho-functional properties. Anthonie van Leeuwenhoek76, 207–216 (1999).CrossRefGoogle Scholar
  92. Mensink R.P., Katan M.B.: Effect of dietary fatty acids on serum lipids and lipoproteins: a meta-analysis of 27 trials. Artherioscl. Thromb.12, 911–919 (1992).Google Scholar
  93. Mensink R.P., Zock P.L., Kester A.D., Atan M.B.: Effects of dietary fatty acids and carbohydrates on the ration of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am.J.Clin.Nutr.77, 1146–1155 (2003).PubMedGoogle Scholar
  94. Meydani S.N., Ha W.-K.: Immunologic effects of yoghurt. Am.J.Clin.Nutr.71, 861–872 (2000).PubMedGoogle Scholar
  95. Mezzaroba L.F.H., Carvalho J.E., Ponezi A.N., Antonio M.A., Monteiro K.M., Possenti A., Sgarbieri V.C.: Antiulcerative pro-perties of bovine α-lactalbumin. Internat.Dairy J.16, 1005–1112 (2006).CrossRefGoogle Scholar
  96. Mikeš Z., Ferenčík M., Jahnová E., Ebringer L., Čižnár I.: Hypocholesterolemic and immunostimulatory efects of orally applied Enterococcus faecium M-74 in man. Folia Microbiol.40, 639–646 (1995).CrossRefGoogle Scholar
  97. Mikeš Z., Ebringer L., Boča M., Dušinský R., Jahnová E.: Some risk factors for cardiovascular diseases in using traditional Slovak sheep cheese: results of a pilot study. (In Slovak) Geriatria1, 29–36 (2005).Google Scholar
  98. Mistry N., Drobni P., Nasland J., Sunkari V.G., Jenssen H., Evander M.: The antipapillomavirus activity of human and bovine lactoferricin. Antivir.Res.75, 258–265 (2007).PubMedCrossRefGoogle Scholar
  99. Miyauchi H., Hashimoto S., Nakajima M., Shinoda I., Fukuwatari Y., Hayasawa H.: Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of its active domain. Cell.Immunol.187, 34–37 (1998).PubMedCrossRefGoogle Scholar
  100. Mizushima S., Ohshige K., Watanabe J., Kimura M., Kadowaki T., Nakamura Y., Tochikubo O., Ueshima H.: Randomized controlled trial of sour milk and blood pressure in borderline hypertensive men. Am.J.Hypertens.17, 701–706 (2004).PubMedCrossRefGoogle Scholar
  101. Montagne P.M., Tregoat V.S., Cuilliere M.L., Bene M.C., Taure G.C.: Measurement of nine human milk proteins by nephelometric immunoasssays: application to the determination of nature milk protein profile. Clin.Biochem.33, 181–186 (2000).PubMedCrossRefGoogle Scholar
  102. Morgan F., Bodin J.-P., Gaborit P.: Link between goat milk lipolysis and sensorial quality of lactic goat cheeses made from raw or pasteurized milk. Lait81, 743–746 (2001).CrossRefGoogle Scholar
  103. Morrow A.L., Ruiz-Palacios G.M., Jiang X., Newburg D.S.: Human-milk glycans inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J.Nutr.135, 1304–1307 (2005).PubMedGoogle Scholar
  104. Nagaoka S., Futamura Y., Miwa K., Awano T., Yamauchi K., Kanamaru Y., Tadashi K., Kuwata T.: Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochem.Biophys.Res.Commun.281, 11–17 (2001).PubMedCrossRefGoogle Scholar
  105. Newburg D.S.: Innate immunity and human milk. J.Nutr.135, 1308–1312 (2005).PubMedGoogle Scholar
  106. Newburg D.S., Ruiz-Palacios G.M., Morrow A.L.: Human milk glycans protect infants against enteric pathogens. Ann.Rev.Nutr.25, 37–58 (2005).CrossRefGoogle Scholar
  107. Newburg D.S., Walker W.A.: Protection of the neonate by the innate immune system of developing gut and of human milk. Pediat.Res.62, 2–8 (2007).CrossRefGoogle Scholar
  108. Ochoa J.J., Farguharson A.J., Grant I., Moffat M.E., Heys S.D., Wahle K.W.: Conjugated linoleic acid (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis 9, trans 11 and trans 10, cis 12 isomers. Carcinogenesis25, 1185–1191 (2004).PubMedCrossRefGoogle Scholar
  109. Odriozola-Serrano I., Bendicho-Porta S., Martin-Belloso O.: Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment. J.Dairy Sci.89, 905–911 (2006).PubMedGoogle Scholar
  110. Parodi P.W.: Cow’s milk folate binding protein: its role in folate nutrition. Austral.J.Dairy Technol.52, 109–118 (1997).Google Scholar
  111. Parodi P.W.: Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J.Dairy Sci.82, 1339–1349 (1999).PubMedGoogle Scholar
  112. Parodi P.W.: Milk in human nutrition. Austral.J.Dairy Technol.59, 3–59 (2004).Google Scholar
  113. Paulin Y., Pouliot Y., Lamiot E., Aattouri N., Gauthier S.F.: Safety and efficacy of a milk-derived extract in the treatment of plaque psoriasis: an open label study. J.Cutan.Med.Surg.9, 271–275 (2005).CrossRefGoogle Scholar
  114. Pecquet S., Bovetto L., Maynard F., Fritsche R.: Peptides obtained by tryptic hydrolysis of bovine β-lactoglobulin induce specific oral tolerance in mice. J.Allergy Clin.Immunol.105, 514–521 (2000).PubMedCrossRefGoogle Scholar
  115. Pellegrini A.: Antimicrobial peptides from food proteins. Curr.Pharmaceut.Design9, 1225–1238 (2003).CrossRefGoogle Scholar
  116. Pereira D., Gibson G.R.: Cholesterol assimilation by lactic acid bacteria and bifidobacteria. Appl.Environ.Microbiol.68, 4689–4693 (2002).PubMedCrossRefGoogle Scholar
  117. Pihlanto-Leppälä A., Koskinen P., Piilola K., Tupasela T., Korhonen H.: Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J.Dairy Res.67, 53–64 (2000).PubMedCrossRefGoogle Scholar
  118. Pinnock C.B., Arney W.K.: The milk-mucus believe: sensory analysis comparing cow’s milk and a soy placebo. Appetite20, 61–67 (1993).PubMedCrossRefGoogle Scholar
  119. Pinnock C.B., Graham N.M., Mylvaganam A., Douglas R.M.: Relationship between intake and mucus production in adult volunteers challenged with rhinovirus-2. Am.Rev.Resp.Dis.141, 352–356 (1990).PubMedGoogle Scholar
  120. Possemiers S., Van Camp J., Bolca S., Verstraete W.: Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Internat.J.Food Microbiol.105, 59–70 (2005).CrossRefGoogle Scholar
  121. Pouliot Y., Gauthier S.F.: Milk growth factors as health products: some technological aspects. Internat.Dairy J.16, 1415–1420 (2006).CrossRefGoogle Scholar
  122. Prased S., Dhiman R.K., Duseja A., Chawla Y.K., Sharma A., Agarwal R.: Lactulose improves cognitive functions and healthrelated quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology45, 549–559 (2007).CrossRefGoogle Scholar
  123. Rachid M., Matar C., Duarte J., Perdigon G.: Effect of milk fermented with a Lactobacillus helveticus R389(+) proteolytic strain on the immune system and on the growth of 471 breast cancer cells in mice. FEMS Immunol.Med.Microbiol.47, 242–253 (2006).PubMedCrossRefGoogle Scholar
  124. Rainer L., Heiss C.J.: Conjugated linoleic acid: health implications and effects on body composition. J.Am.Diet.Assoc.104, 963–968 (2004).PubMedCrossRefGoogle Scholar
  125. Razafindrakoto O., Revelomanana N., Rasolofo A., Rakotoarimanana R.D., Bourque P., Coquin P., Briend A., Desjeux J.F.: May goat milk replace cow milk in undernourished children? (In French) Lait73, 601–611 (1993).CrossRefGoogle Scholar
  126. Reiter B., Perraudin J.P.: Lactoperoxidase, biological functions, pp. 144–180 in J. Everse, K.F. Everse, B. Brisham (Eds): Peroxidases in Chemistry and Biology, Vol. II. CRC Press, Boca Raton (USA) (1991).Google Scholar
  127. Reynolds E.C.: Anticariogenic casein phosphopeptides. Prot.Peptides Lett.6, 253–303 (1999).Google Scholar
  128. Riollet C., Rainard P., Poutrel B.: Cell subpopulation and cytokine expression in cow milk in response to chronic Staphylococcus aureus infection. J.Dairy Sci.84, 1077–1084 (2001).PubMedGoogle Scholar
  129. Santosa S., Farnworth E., Jones P.J.: Probiotics and their potential health claims. Nutr.Rev.64, 265–274 (2006).PubMedCrossRefGoogle Scholar
  130. Sanz Sampelayo M.R., Chilliard Y., Schmidely P., Boza J.: Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumen Res.68, 42–63 (2007).CrossRefGoogle Scholar
  131. Schanbacher F.L., Talhouk R.S., Murray F.A.: Biology and origin of bioactive peptides in milk. Liv.Prod.Sci.50, 105–123 (1997).CrossRefGoogle Scholar
  132. Schrezenmeir J., de Vrese M.: Probiotics, prebiotics, and synbiotics — approaching and definition. Am.J.Clin.Nutr.73(Suppl.), 361S–364S (2001).PubMedGoogle Scholar
  133. Schuster G.S., Dirksen T.R., Ciarlonw A.E., Burnett G.W., Reynolds M.T., Lankford M.T.: Anticaries and antiplaque potential of free fatty acids in vitro and in vivo. Pharmacol.Ther.Dent.5, 25–33 (1980).PubMedGoogle Scholar
  134. Seppo L., Jauhiainen T., Poussa T., Korpela R.: A fermented milk high in bioactive peptides has a blood pressure-lowering effect in ypertensive subjects. Am.J.Clin.Nutr.77, 326–330 (2003).PubMedGoogle Scholar
  135. Seifu E., Buys E.M., Donkin E.F.: Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci.Technol.16, 137–154 (2005).CrossRefGoogle Scholar
  136. Silva S.V., Malcata F.X.: Caseins as source of bioactive peptides. Internat.Dairy J.15, 1–15 (2005).CrossRefGoogle Scholar
  137. Sipola M., Finckenberg P., Korpela R., Vapaatolo H., Nurminen M.-L.: Effect of long-term intake of milk products on blood pressure in hypertensive rats. J.Dairy Res.69, 103–111 (2002).PubMedCrossRefGoogle Scholar
  138. Smithers G.W.: Isolation of growth factors from whey tiand their application in food and biotechnology industries — a brief review, pp. 16–19 in Bull. No. 389, Advances in Fractionation and Separation Processes for Novel Dairy Applications. Internat. Dairy Federation, Brussels 2004.Google Scholar
  139. Songisepp E., Kullisaar T., Hutt P., Elias P., Brilene T., Zilmer M., Mikelsaar M.: A new probiotic cheese with antioxidative and antimicrobial activity. J.Dairy Sci.87, 2013–2017 (2004).Google Scholar
  140. Songisepp E., Kals J., Kullisaar T., Mändar R., Hutt P., Zilmer M., Mikelsaar M.: Evolution of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr.J.4, 22–31 (2005).PubMedCrossRefGoogle Scholar
  141. Sprong R.C., Hulstein M.F., van der Meer R.: High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. J.Nutr.129, 1382–1389 (1999).PubMedGoogle Scholar
  142. Sun C.Q., O’Connor C.J., Roberton A.M.: The antimicrobial properties of milk fat after partial hydrolysis by calf pregastric lipase. Chem.Biol.Interact.140, 185–198 (2002).PubMedCrossRefGoogle Scholar
  143. Svensson M., Hakansson A., Mossberg A.K., Linse C., Svanborg C.: Conversion of α-lactoglobulin to a protein inducing apoptosis. Proc.Nat.Acad.Sci.USA97, 4221–4226 (2000).PubMedCrossRefGoogle Scholar
  144. Tahri K., Grill J.P., Schneider F.: Bifidobacteria strains’ behavior toward cholesterol coprecipitation with bile salts assimilation. Curr.Microbiol.3, 187–193 (1996).CrossRefGoogle Scholar
  145. Taylor M.J., Richardson T.: Antioxiodant activity of skim milk: effect of heat and resultant sulfhydryl groups. J.Dairy Sci.63, 1783–1795 (1980).Google Scholar
  146. Teschemacher H., Brantl V.: Milk proteins derived atypical opioid peptides and related compounds with opioid antagonist activity pp. 3–17 in V. Brantl, T. Teschemacher (Eds): β-Casomorphins and Related Peptides: Recent Developments. VCH Publishers, Weinheim (Germany) 1994.Google Scholar
  147. Thormar H., Isaacs E.E., Kim K.S., Brown H.R.: Interaction of visna virus and other enveloped viruses by free fatty acids and monoglycerides. Ann.N.Y.Acad.Sci.724, 465–471 (1994).PubMedCrossRefGoogle Scholar
  148. Thormar H., Hilmarsson H.: The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem.Phys.Lipids150, 1–11 (2007).PubMedCrossRefGoogle Scholar
  149. Toba Y., Takada Y., Matsuoka Y., Morita Y., Motouri M., Hirai T., Suguri T., Aoe S., Kawakami H., Kumegawa M., Takeuchi A., Itabashi A.: Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men. Biosci.Biotechnol.Biochem.65, 1353–1357 (2001).PubMedCrossRefGoogle Scholar
  150. Trebichavský I., Šplíchal I.: Probiotics manipulate host cytokine response and induce antimicrobial peptides. Folia Microbiol.51, 507–510 (2006).CrossRefGoogle Scholar
  151. Tricon S., Burdge G.C., Kew S., Banerjee T., Russel J.J., Jones E.L., Grimble R.F., Williams C.M., Yaqoob P., Calder P.C.: Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am.J. Clin.Nutr.80, 614–620 (2004).PubMedGoogle Scholar
  152. Tsopmo A., Friel J.K.: Human milk has anti-oxidant properties to protect premature infants. Curr.Pediatr.Rev.3, 45–51 (2007).CrossRefGoogle Scholar
  153. Ustundag D., Yilmaz E., Dogan Y., Akarsu S., Canatan H., Halifeoglu I., Cikim G., Aygun A.D.: Levels of cytokines (IL-1β, IL-2, IL-6, IL-8, TNF-α) and trace elements (Zn, Cu) in breast milk from mothers of preterm and term infants. Mediat. Inflamm.6, 331–336 (2005).CrossRefGoogle Scholar
  154. Van der Meer R., Bovee-Oudenhoven I.M.J., Sesink A.L.A., Kleibeuker J.H.: Milk products and intestinal health. Internat.Dairy J.8, 163–170 (1998).CrossRefGoogle Scholar
  155. Vegarud G.E., Langsrud T., Svenning C.: Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Brit.J.Nutr.84, S91–S98 (2000).PubMedCrossRefGoogle Scholar
  156. Vesper H., Schelma E., Nikolova-Karakashion M.N., Dillehay D.L., Lynch D.V., Mercill A.H.: Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J.Nutr.129, 1239–1249 (1999).PubMedGoogle Scholar
  157. Walker G., Cai F., Shen P., Reynolds C., Ward B., Fone C., Honda S., Koganei M., Oda M., Reynolds E.: Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J.Dairy Res.73, 74–78 (2006).PubMedCrossRefGoogle Scholar
  158. Wang Q., Allen J.C., Swaisgood H.E.: Binding of vitamin D and cholesterol to β-lactoglobulin. J.Dairy Sci.80, 1054–1059 (1997).PubMedCrossRefGoogle Scholar
  159. Wang W.P., Iigo M., Sato J., Sekine K., Adachi I., Tsuda H.: Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Japan.J.Cancer Res.91, 1022–1027 (2000).Google Scholar
  160. Weinberg E.D.: Antibiotic properties and applications of lactoferrin. Curr.Pharmaceut.Design13, 801–811 (2007).CrossRefGoogle Scholar
  161. Welsh J.K., May J.T.: Anti-infective properties of breast-milk. J.Pediatr.94, 1–9 (1979).PubMedCrossRefGoogle Scholar
  162. Wijga A.H., Smit H.A., Kerkhof M., de Jongste J.C., Gerritsen J., Neijens H.J., Boshuizen H.C., Brunekreef B.: Association of consumption of product containing milk fat with reduced asthma risk in pre-school children: the PIAMA birth cohort study. Thorax58, 567–572 (2003).PubMedCrossRefGoogle Scholar
  163. Wuthrich B., Schmid A., Walther B., Sieber R.: Milk consumption does not lead to mucus production or occurrence of asthma. J.Am.Coll.Nutr.24, 547S–555S (2005).PubMedGoogle Scholar
  164. Yamauchi K., Wakabayashi H., Shin K., Takase M.: Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol.84, 291–296 (2006).PubMedCrossRefGoogle Scholar
  165. Yoshida T., Owens G.K.: Molecular determinant of vascular smooth muscle diversity. Circul.Res.96, 280–291 (2005).CrossRefGoogle Scholar
  166. Yoshikawa M., Tani F., Chiba H.: Structure-activity relationship of opioid antagonist peptides derived from milk proteins, pp. 473–476 in T. Schiba (Ed.): Peptide Chemistry. Protein Research Foundation, Osaka (Japan) 1998.Google Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  1. 1.Institute of Cell Biology, Faculty of ScienceComenius UniversityBratislavaSlovakia
  2. 2.Institute of NeuroimmunologySlovak Academy of SciencesBratislavaSlovakia
  3. 3.Institute of Immunology, Faculty of MedicineComenius UniversityBratislavaSlovakia

Personalised recommendations