Folia Microbiologica

, 53:333 | Cite as

Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition

  • E. Zapomělová
  • P. Hrouzek
  • K. Řeháková
  • M. Šabacká
  • M. Stibal
  • L. Caisová
  • J. Komárková
  • A. Lukešová
Papers

Abstract

The effect of temperature, light and nutrient composition on morphological traits was determined in seven nostocacean cyanobacteria (Anabaena planctonica, A. sphaerica var. conoidea, A. spiroides, Aphanizomenon gracile, Nostoc sp., Scytonema sp., and Tolypothrix sp.). Their morphological variability was high but only some of the features showed changes reflecting varied growth conditions. The frequency of heterocyst occurrence decreased with increasing nitrogen concentration. Within the range studied, the effect of temperature on heterocyst frequency of Tolypothrix sp. and planktonic Anabaena strains could be fitted by a normal curve with a clear optimum while linear correlation was found in Aphanizomenon gracile. T-and S-type branching was observed in both Scytonema sp. and Tolypothrix sp. strains. T-type branching was found to be markedly dependent on nitrogen concentration. The abundance of necridic cells of Tolypothrix sp. increased linearly with temperature and light intensity. Regularity of trichome coiling of A. spiroides depended on culture medium, suggesting that nutrient composition may be the main controlling factor. In contrast, the effect of the experimental conditions on the dimensions of vegetative cells and heterocysts was weak. Their variability was markedly higher within each experimental treatment than between treatments.

References

  1. Agrawal S.C., Singh V.: Viability of dried vegetative trichomes, formation of akinetes and heterocysts and akinete germination in some blue-green algae under water stress. Folia Microbiol. 44, 411–418 (1999).CrossRefGoogle Scholar
  2. Agrawal S.C., Singh V.: Viability of dried filaments, survivability and reproduction under water stress, and survivability following heat and UV exposure in Lyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola, Hormidium fluitans, Spirogyra sp. and Vaucheria geminata. Folia Microbiol. 47, 61–67 (2002).CrossRefGoogle Scholar
  3. Anand N.: Culture studies and taxonomy of blue-green algae — certain identification problems. Arch.Hydrobiol.Suppl. 80, 141–147 (1988).Google Scholar
  4. Beier C., Eckerstenb H.: Modelling the effects of nitrogen addition on soil nitrogen status and nitrogen uptake in a Norway spruce stand in Denmark. Environ.Pollut. 102, 409–414 (1998).CrossRefGoogle Scholar
  5. Booker M.J., Walsby A.E.: The relative form resistance of straight and helical blue-green algal filaments. Brit.Phycol.J. 14, 141–150 (1979).CrossRefGoogle Scholar
  6. Coveney M.F., Stites D.L., Lowe E.F., Battoe L.E., Conrow R.: Nutrient removal from eutrophic lake water by wetland filtration. Ecol.Eng. 19, 141–159 (2002).CrossRefGoogle Scholar
  7. Garcia-Pichel F., Nübel U., Muyzer G.: The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch.Microbiol. 169, 469–482 (1998).PubMedCrossRefGoogle Scholar
  8. Geitler L.: Cyanophyceae, Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Koeltz Scientific Books, Berlin 1932.Google Scholar
  9. Gugger M., Lyra C., Henriksen P., Couté A., Humbert J.-F., Sivonen K.: Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Internat.J.Syst.Evol.Microbiol. 52, 1–14 (2002).Google Scholar
  10. Guillard R.R.L., Lorenzen C.J.: Yellow-green algae with chlorophyllide c. J.Phycol. 8, 10–14 (1972).Google Scholar
  11. Gupta S., Agrawal S.C.: Survival of blue-green and green algae under stress conditions. Folia Microbiol. 51, 121–128 (2006a).CrossRefGoogle Scholar
  12. Gupta S., Agrawal S.C.: Motility in Oscillatoria salina as affected by different factors. Folia Microbiol. 51, 565–572 (2006b).CrossRefGoogle Scholar
  13. Gupta S., Agrawal S.C.: Survival and reproduction in some algae under stress conditions. Folia Microbiol. 52, 603–618 (2007).CrossRefGoogle Scholar
  14. Hickel B.: A helical, bloom forming Anabaena-like blue-green alga (Cyanophyta) from hypertrophic lakes. Arch.Hydrobiol. 95, 115–124 (1982).CrossRefGoogle Scholar
  15. Hoffmann L., Demoulin V.: Morphological variability of some species of Scytonemataceae (Cyanophyceae) under different culture conditions. Bull.Soc.Roy.Botan.Belgique 118, 189–197 (1985).Google Scholar
  16. Jezberová J., Komárková J.: Morphometry and growth of three Synechococcus-like picoplanktic cyanobacteria at different culture conditions. Hydrobiologia 578, 17–27 (2007).CrossRefGoogle Scholar
  17. Kleinhenz V., Schnitzler W.-H., Midmore D.-J.: Seasonal effect of soil moisture on soil availability, crop N status, and yield of vegetables in a tropical, rice-based lowland. Tropenlandwirt.Beitr.Tropischen Landwirtsch.Veterinärmed. 98, 25–42 (1997).Google Scholar
  18. Komárek J.: A key for determination of water-bloom-forming cyanobacteria in the Czech Republic, pp. 22–85 in B. Maršálek, V. Keršner, P. Marvan (Eds): Cyanobacterial Water Blooms. (In Czech) Nadatio flos-aquae, Brno (Czechia) 1996.Google Scholar
  19. Komárek J., Anagnostidis K.: Modern approach to the classification system of cyanophytes — 4. Nostocales. Arch.Hydrobiol.Suppl. 82, 247–345 (1989).Google Scholar
  20. Kvíderová J., Lukavský J.: A new unit for crossed gradients of temperature and light. Nova Hedwigia, Beiheft Algae Extr.Environ. 123, 541–550 (2001).Google Scholar
  21. Liu X.J., Chen F.: Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. Folia Microbiol. 48, 619–626 (2003).CrossRefGoogle Scholar
  22. Liu X., Ju X., Zhanga F., Pana J., Christie P.: Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crop.Res. 83, 111–124 (2003).CrossRefGoogle Scholar
  23. Lyra C., Suomalainen S., Gugger M., Vezie C., Sundman P., Paulin L., Sivonen K.: Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Internat.J.Syst.Evol.Microbiol. 51, 513–526 (2001).Google Scholar
  24. Nalewajko C., Murphy T.P.: Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2, 45–48 (2001).CrossRefGoogle Scholar
  25. Rajaniemi P., Hrouzek P., Kaštovská K., Willame R., Rantala A., Hoffmann L., Komárek J., Sivonen K.: Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Internat.J.Syst.Evol.Microbiol. 55, 11–26 (2005a).CrossRefGoogle Scholar
  26. Rajaniemi P., Komárek J., Willame R., Hrouzek P., Kaštovská K., Hoffmann L., Sivonen K.: Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Arch.Hydrobiol., Algol. Stud. 117 (Cyanobact.Res. 6), 371–391 (2005b).Google Scholar
  27. Rekolainen S., Mitikka S., Vuorenma J., Johansson M.: Rapid decline of dissolved nitrogen in Finnish lakes. J.Hydrol. 304, 94–102 (2005).CrossRefGoogle Scholar
  28. Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J.Gen.Microbiol. 111, 1–61 (1979).Google Scholar
  29. Šmilauer P.: CANODRAW Users Guide v. 3.0. Microcomputer Power, Ithaca (USA) 1992.Google Scholar
  30. Stanier R.Y., Kuniswawa R., Mandel R.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971).PubMedGoogle Scholar
  31. Starmach K.: Cyanophyta — Blue-Green Algae, Gaucophyta — Glaucophytes. Fresh-Water Flora of Poland, Vol. 2. (In Polish) State Scientific Publishers, Warsaw 1966.Google Scholar
  32. Stulp B.K.: Morphological variability of Anabaena strains (Cyanophyceae) under different culture conditions. Arch.Hydrobiol.Suppl. 63, 165–176 (1982).Google Scholar
  33. Stulp B.K., Stam W.T.: Growth and morphology of Anabaena strains (Cyanophyceae, Cyanobacteria) in cultures under different salinities. Brit.Phycol.J. 19, 281–286 (1984).CrossRefGoogle Scholar
  34. Ter Braak C.J.F., Šmilauer P.: CANOCO Reference Manual. Microcomputer Power, Ithaca (USA) 1998.Google Scholar
  35. Zapomělová E.: Morphological variability and growth of chosen cyanobacterial strains of genera Anabaena and Aphanizomenon in the dependence on environmental conditions. MSc Thesis. (In Czech) University of South Bohemia, České Budějovice (Czechia) 2004.Google Scholar
  36. Zapomělová E., Řeháková-Kaštovská K., Znachor P., Komárková J.: Morphological diversity of coiled planktonic types of the genus Anabaena (Cyanobacteria) in natural populations — taxonomic consequences. Cryptogamie Algol. 28, 353–371 (2007).Google Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  • E. Zapomělová
    • 1
    • 2
  • P. Hrouzek
    • 1
    • 3
    • 4
  • K. Řeháková
    • 2
  • M. Šabacká
    • 1
  • M. Stibal
    • 1
  • L. Caisová
    • 1
    • 5
  • J. Komárková
    • 1
    • 2
  • A. Lukešová
    • 6
  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
  2. 2.Institute of HydrobiologyBiology Centre of the Academy of Sciences of the Czech RepublicČeské BudějoviceCzechia
  3. 3.Department of Autotrophic Microorganisms, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicTřeboňCzechia
  4. 4.Institute of Physical BiologyUniversity of South BohemiaNové HradyCzechia
  5. 5.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzechia
  6. 6.Institute of Soil BiologyBiology Centre of the Academy of Sciences of the Czech RepublicČeské BudějoviceCzechia

Personalised recommendations