Folia Microbiologica

, Volume 53, Issue 3, pp 263–269 | Cite as

Auto-aggregation and Co-aggregation ability in bifidobacteria and clostridia

  • E. Vlková
  • V. Rada
  • M. Šmehilová
  • J. Killer


A total of 142 human and 88 calf bifidobacteria were isolated and identified; ≈12 % of all isolated strains exhibited auto-aggregation (Agg) phenotype (Agg+). Properties considered to be predicting for their adhesion to intestine, i.e. auto-aggregation, and hydrophobicity were determined by xylene extraction in 18 human and 8 calf origin bifidobacteria. Co-aggregation of 8 human bifidobacteria with 8 clostridia was also evaluated. Agg varied between 16.3 and 96.4 %, hydrophobicity values ranged from 0 to 82.8 %. The strongest Agg and hydrophobicity were observed in B. bifidum and B. merycicum isolates. However, there were no statistically significant correlations between these two properties. Variability in the percentage of Agg and hydrophobicity was observed after cultivation of bifidobacteria on different carbon sources. All bifidobacteria showed co-aggregation ability with clostridia tested but there were remarkable differences depending on specific combinations of strains. The bifidobacterial strains with the highest ability to co-aggregate with clostridia were B. bifidum I4 and B. longum I10 isolated from infants; these strains gave also high values of Agg. Agg properties together with co-aggregation ability with potential pathogen can be used for preliminary selection of probiotic bacteria.


Lactic Acid Bacterium Probiotic Bacterium Probiotic Strain Cell Surface Hydrophobicity Intestinal Mucus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe F., Ishibashi N., Shimamura S.: Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J.Dairy Sci.78, 2838–2846 (1995).PubMedCrossRefGoogle Scholar
  2. Biavati B., Mattarelli P.: Bifidobacterium ruminantium sp.nov. and Bifidobacterium merycicum sp.nov. from the rumens of cattle. Internat.J.Syst.Bacteriol.41, 163–168 (1991).CrossRefGoogle Scholar
  3. Bibiloni R., Fernando P., de Antoni G.L.: Will a high adhering capacity in a probiotic strain quarantee exclusion of pathogens from intestinal epithelia. Anaerobe5, 519–524 (1999).CrossRefGoogle Scholar
  4. Bolduc M.P., Raymond Y., Fustier P., Champagne C.P., Vuillemard J.C.: Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk. Internat.Dairy J.16, 1038–1048 (2006).CrossRefGoogle Scholar
  5. Bujňáková D., Vlková E., Rada V., Kmeť V.: Aggregation of lactobacilli and bifidobacteria with Escherichia coli O157. Folia Microbiol.49, 143–146 (2004).CrossRefGoogle Scholar
  6. Candela M., Seibold G., Vitali B., Lachenmaier S., Eikmanns B.J., Brigidi P.: Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res.Microbiol.156, 887–895 (2005).PubMedCrossRefGoogle Scholar
  7. Čepeljnik T., Lah B., Narat M., Marinšek-Logar R.: Adaptation of adhesion test using Caco-2 cells for anaerobic bacterium Pseudobutyrivibrio xylanivorans, a probiotic candidate. Folia Microbiol.52, 367–374 (2007).CrossRefGoogle Scholar
  8. Collado M.C., Meriluoto J., Salminen S.: Adhesion and aggregation properties of probiotic and pathogen strains. Eur.Food Res. Technol., in press (2007a).Google Scholar
  9. Collado M.C., Surono I., Meriluoto J., Salminen S.: Indigenous dadih lactic acid bacteria: cell-surface properties and interactions with pathogens. J.Food Sci.72, M89–M93 (2007b).PubMedCrossRefGoogle Scholar
  10. Del Re B., Sgorbati B., Miglioli M., Palenzola D.: Adhesion, auto-aggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett.Appl.Microbiol.31, 438–442 (2000).PubMedCrossRefGoogle Scholar
  11. Fajdiga S., Koninkx J.F.J.G., Tooten P.C.J., Marinšek-Logar R.: Interference of Salmonella enteritidis and Lactobacillus spp. with IL-8 levels and transepithelial electrical resistance of enterocyte-like Caco-2 cells. Folia Microbiol.51, 268–272 (2006).CrossRefGoogle Scholar
  12. Fanaro S., Chierici R., Guerrini P., Vigi V.: Intestinal microflora in early infancy: composition and development. Acta Paediatr.441 (Suppl.), 48–55 (2003).Google Scholar
  13. Fasoli S., Marzotto M., Rizzotti L., Rossi F., Dellaglio F., Torriani S.: Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Internat.J.Food Microbiol.82, 59–70 (2003)CrossRefGoogle Scholar
  14. Gilliland S.E., Reilly S.S., Kim G.B., Kim H.S.: Viability during storage of selected probiotic lactobacilli and bifidobacteria in yogurt-like product. J.Food Sci.67, 3091–3095 (2002).CrossRefGoogle Scholar
  15. Gómez-Zavaglia A., Kociubinski G., Perez P., Disalvo E., de Antoni G.: Effect of bile on the lipid composition and surface properties of bifidobacteria. J.Appl.Microbiol.93, 794–799 (2002).PubMedCrossRefGoogle Scholar
  16. Gueimonde M., Noriega L., Margolles A., de los Reyes-Gavilan C.G., Salminen S.: Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. Internat.J.Food Microbiol.101, 341–346 (2005).CrossRefGoogle Scholar
  17. Horošová K., Bujňáková D., Kmeť V.: Effect of lactobacilli on E. coli adhesion to Caco-2 cells in vitro. Folia Microbiol.51, 281–282 (2006).CrossRefGoogle Scholar
  18. Kirjavainen P.V., Ouwehand A.C., Isolauri E., Salminen S.J.: The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol.Lett.167, 185–189 (1998).PubMedCrossRefGoogle Scholar
  19. Leahy S.C., Higgins D.G., Fitzgerald G.F., van Sinderen D.: Getting better with bifidobacteria. J.Appl.Microbiol.98, 1303–1315 (2005).PubMedCrossRefGoogle Scholar
  20. Matsuki T., Watanabe K., Tanaka R.: Genus-and species-specific PCR primers for the detection and identification of bifidobacteria. Curr.Issues Intest.Microbiol.4, 61–69 (2003).PubMedGoogle Scholar
  21. Mättö J., Malinen E., Suihko M.L., Alander M., Palva A., Saarela M.: Genetic heterogeneity and functional properties of intestinal bifidobacteria. J.Appl.Microbiol.97, 459–470 (2004).PubMedCrossRefGoogle Scholar
  22. O’sullivan D.J.: Evolutionary adaptation responses in bifidobacteria: comparative and functional genomics. Proc. 2nd Internat. Symp. on Propionibacteria and Bifidobacteria, Wadahal (Norway) 2007.Google Scholar
  23. Orban J.I., Patterson J.A.: Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J.Microbiol.Meth.40, 221–224 (2002).CrossRefGoogle Scholar
  24. Ouwehand A.C., Niemi P., Salminen S.J.: The normal fecal microflora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol.Lett.177, 35–38 (1999).PubMedCrossRefGoogle Scholar
  25. Ouwehand A.C., Tölkkö S., Salminen S.: The effect of digestive enzymes on adhesion of probiotic bacteria in vitro. J.Food Sci.66, 856–859 (2001).CrossRefGoogle Scholar
  26. Ouwehand A.C., Isolauri E., Salminen S.J.: The role of the intestinal microflora for the development of the immune system in early childhood. Eur.J.Nutr.41, 132–137 (2002).CrossRefGoogle Scholar
  27. Rada V., Petr J.: A new selective medium for the isolation of glucose nonfermenting bifidobacteria. J.Microbiol.Meth.43, 127–132 (2000).CrossRefGoogle Scholar
  28. Riedel C.U., Foata F., Goldstein D.R., Blum S., Eikmanns B.J.: Interaction of bifidobacteria with Caco-2 cells — adhesion and impact on expression profiles. Internat.J.Food Microbiol.110, 62–68 (2006).CrossRefGoogle Scholar
  29. Sheil B., Shanahan F., O’Mahony L.: Probiotic effects on inflammatory bowel disease. J.Nutr.137, 819S–824S (2007).PubMedGoogle Scholar
  30. Trebichavský I., Šplíchal I.: Probiotics manipulate host cytokine response and induce antimicrobial peptides. Folia Microbiol.51, 507–510 (2006).CrossRefGoogle Scholar
  31. Vlková E., Nevoral J., Jenčíková B., Kopečný J., Godefrooij J., Trojanová I., Rada V.: Detection of infant fecal bifidobacteria by enzymatic methods. J.Microbiol.Meth.60, 365–373 (2005).CrossRefGoogle Scholar
  32. Vlková E., Trojanová I., Rada V.: Distribution of bifidobacteria in gastrointestinal tract of calves. Folia Microbiol.51, 325–328 (2006).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  • E. Vlková
    • 1
  • V. Rada
    • 1
  • M. Šmehilová
    • 1
  • J. Killer
    • 1
  1. 1.Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzechia

Personalised recommendations