Folia Microbiologica

, Volume 53, Issue 3, pp 195–200 | Cite as

Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion — Review

  • Y. KobayashiEmail author
  • T. Shinkai
  • S. Koike


Fibrobacter succinogenes is a major cellulolytic species in the rumen. On the basis of molecular data, this species can be classified into four phylogenetic groups. Recently gathered ecological and physiological data have revealed the importance of this species, particularly phylogenetic group 1, in rumen fiber digestion. These data indicate that group 1 should be the focus of future efforts to maximize the fibrolytic function of the rumen.


Cellulase Phylogenetic Group Cellulolytic Bacterium Fiber Digestion Orchard Grass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



denatured gradient gel electrophoresis

FISH (method)

fluorescence in situ hybridization (method)


polymerase chain reaction


quantitative PCR


restriction fragment length polymorphism


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann R.L., Lin C., Key R., Montgomery L., Stahl D.A.: Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst.Appl.Microbiol.15, 23–31 (1992).Google Scholar
  2. Be’ra-Maillet C., Ribot Y., Forano E.: Fiber-degrading systems of different strains of the genus Fibrobacter. Appl.Environ.Microbiol.70, 2172–2179 (2004).CrossRefGoogle Scholar
  3. Cheng K.J., Stewart C.S., Dinsdale D., Costerton J.W.: Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim.Feed Sci.Technol.10, 93–120 (1984).CrossRefGoogle Scholar
  4. Fields M.W., Mallik S., Russell J.B.: Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl.Environ.Microbiol.54, 570–574 (2000).Google Scholar
  5. Jun H.S., Qi M., Ha J.K., Forsberg C.W.: Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: transition to the post genomic era. Asian-Austral.J.Anim.Sci.20, 802–810 (2007).Google Scholar
  6. Koike S., Kobayashi Y.: Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol.Lett.204, 361–366 (2001).PubMedCrossRefGoogle Scholar
  7. Koike S., Pan J., Kobayashi Y., Tanaka K.: Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J.Dairy Sci.86, 1429–1435 (2003).PubMedGoogle Scholar
  8. Koike S., Pan J., Suzuki T., Takano T., Oshima C., Kobayashi Y., Tanaka K.: Ruminal distribution of the cellulolytic bacterium Fibrobacter succinogenes in relation to its phylogenetic grouping. Anim.Sci.J.75, 417–422 (2004).CrossRefGoogle Scholar
  9. Koike S., Yabuki H., Kobayashi Y.: Validation and application of real-time PCR assays for representative rumen bacteria. Anim.Sci.J.78, 135–141 (2007).CrossRefGoogle Scholar
  10. Kopečný J., Hodrová B.: The effect of yellow affinity substance on cellulases of Ruminococcus flavefaciens. Lett.Appl.Microbiol.25, 191–196 (1997).PubMedCrossRefGoogle Scholar
  11. Kozakai K., Nakamura T., Kobayashi Y., Tanigawa T., Osaka I., Kawamoto S., Hara S.: Effect of mechanical processing of corn silage on bacterial colonization and fermentation in the rumen. Can.J.Anim.Sci.87, 259–267 (2007).Google Scholar
  12. Lin C., Flesher B., Capman W.C., Amann R.I., Stahl D.A.: Taxon-specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst.Appl.Microbiol.17, 418–424 (1994).Google Scholar
  13. Matulova M., Noualle R., Capek P., Pe’an M., Forano E., Delfort A.M.: Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid and solid-state nuclear magnetic resonance study. Appl.Environ.Microbiol.71, 1247–1253 (2005).PubMedCrossRefGoogle Scholar
  14. Michalet-Doreau B., Fernandez I., Peyron C., Millet L., Fonty G.: Fibrolytic activities and cellulolyitc bacterial community structure in the solid and liquid phases of rumen contents. Reprod.Nutr.Dev.41, 187–194 (2001).PubMedCrossRefGoogle Scholar
  15. Michalet-Doreau B., Fernandez I., Fonty G.: A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. J.Anim.Sci.80, 790–796 (2002).PubMedGoogle Scholar
  16. Mirobn J., Ben-Ghedallia D.: The degradation and utilization of monosaccharide components by defined ruminal cellulolytic bacteria. Appl.Microbiol.Biotechnol.38, 432–437 (1992).Google Scholar
  17. Mosoni P., Chaucheyras-Durrand F., Bera-Maillet C., Forano E.: Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J.Appl.Microbiol., in press (2008).Google Scholar
  18. Rogar V., Fonty G., Komisarezuk-Bony S., Gouet P.: Effect of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl.Environ.Microbiol.56, 3071–3087 (1990).Google Scholar
  19. Saluzzi L., Smith A., Stewart C.S.: Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes in co-culture. J.Gen.Microbiol.139, 2865–2873 (1993).PubMedGoogle Scholar
  20. Sawanon S., Shinkai T., Koike S., Kobayashi Y., Tanaka K.: Indication of a novel group of Selenomonas ruminantium with high cellulase and fiber-attaching activities from the rumen, pp. 363–368 in K. Ohmiya, K. Sakka, S. Karita, T. Kimura, M. Sakka, Y. Ohnishi (Eds): Biotechnology of Lignocellulose Degradation and Biomass Utilization. Uni Publishers, Tokyo 2003.Google Scholar
  21. Sawanon S., Kobayashi Y.: Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and non-cellulolytic Selenomonas ruminantium: evidence in defined cultures. Anim.Sci.J.77, 208–214 (2006).CrossRefGoogle Scholar
  22. Shinkai T., Kobayashi Y.: Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescent in situ hybridization and real-time PCR. Appl.Environ.Microbiol.73, 1646–1652 (2007).PubMedCrossRefGoogle Scholar
  23. Shinkai T., Matsumoto N., Kobayashi Y.: Ecological characterization of three different phylogenetic groups belonging to the cellulolytic bacterial species Fibrobacter succinogenes in the rumen. Anim.Sci.J.78, 503–511 (2007).CrossRefGoogle Scholar
  24. Stewart C.S., Paniagua C., Dinsdale D., Cheng K.J., Garrow S.H.: Selective isolation and characteristics of Bacteroides succinogenes from the rumen of a cow. Appl.Environ.Microbiol.41, 504–510 (1981).PubMedGoogle Scholar
  25. Sung H.G., Kobayashi Y., Chang J.S., Ha A., Ha J.K.: Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Austral.J.Anim.Sci.20, 200–207 (2007).Google Scholar
  26. Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y.: Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl.Environ.Microbiol.67, 2766–2774 (2001).PubMedCrossRefGoogle Scholar
  27. Weimer P.J., Waghorn G.C., Odt C.L., Mertens D.R.: Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J.Dairy Sci.82, 122–134 (1999).PubMedCrossRefGoogle Scholar
  28. Ziemer C.J., Sharp R., Stern M.D., Cotta M.A., Whitehead T.R., Stahl D.A.: Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes. Appl.Environ.Microbiol.66, 632–643 (2000).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  1. 1.Research Faculty of AgricultureHokkaido UniversitySapporoJapan

Personalised recommendations