Fibers and Polymers

, Volume 20, Issue 11, pp 2280–2288 | Cite as

Flame Retardant Composite Foam Modified by Silylated Nanocellulose and Tris(2-chloropropyl) Phosphate

  • Hansu Kim
  • Juhyuk Park
  • Kyung Suh Minn
  • Seong Yeol Pak
  • Doojin Lee
  • Jae Ryoun YounEmail author
  • Young Seok SongEmail author


Improving flame retardancy is one of the most crucial issues to use polymeric materials for building construction. Most of the flame retardant materials containing halogen atoms delay fire spread, but produce harmful gases during combustion. Hence, we designed and fabricated a composite foam by using a green nanomaterial. Silylated and nanofibrillated cellulose (Si-NFC) was added to polyurethane foam (PUF) containing tris(2-chloropropyl) phosphate (TCPP) in order to reduce the emission of smoke during combustion. Thermal characteristics of the composite foams were investigated through thermogravimetric analysis, limiting oxygen index (LOI), and cone calorimeter tests. The LOI of the Si- NFC embedded composite was increased from 19.3 % to 24.6 %. In addition, the Si-NFC led to an improvement in the thermal stability of the composites by reducing the peak release of heat and smoke. Chemical structure of the residual char was analyzed by using energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy.


Flame retardancy Silylation Nanofibrillated cellulose Composite foam Polyurethane foam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by GRRC program of Gyeonggi Province (GRRC Dankook2016-B03). In addition, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049173) and by the Korea government (MSIT) (No. NRF-2018R1A5A1024127). The authors are grateful for the supports.


  1. 1.
    H.-B. Zhao, M. Chen, and H.-B. Chen, ACS Sustain. Chem. Eng., 5, 7012 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Gutiérrez-González, J. Gadea, A. Rodr íguez, C. Junco, and V. Calderón, Constr. Build. Mater., 28, 653 (2012).CrossRefGoogle Scholar
  3. 3.
    R. Gomez-Rojo, L. Alameda, A. Rodriguez, V. Calderon, and S. Gutierrez-Gonzalez, Polymers (Basel), 11, 359 (2019).CrossRefGoogle Scholar
  4. 4.
    J. H. Park, K. S. Minn, H. R. Lee, S. H. Yang, C. B. Yu, S. Y. Pak, C. S. Oh, Y. S. Song, Y. J. Kang, and J. R. Youn, J. Sound Vib., 406, 224 (2017).CrossRefGoogle Scholar
  5. 5.
    X. Liu, J. Sun, S. Zhang, J. Guo, W. Tang, H. Li, and X. Gu, Polym. Degrad. Stab., 160, 168 (2019).CrossRefGoogle Scholar
  6. 6.
    Y.-J. Chen, C.-M. Shu, S.-P. Ho, H.-C. Kung, S.-W. Chien, H.-H. Ho, and W.-S. Hsu, Tunn. Undergr. Sp. Tech., 84, 142 (2019).CrossRefGoogle Scholar
  7. 7.
    A. Liu and L. A. Berglund, Eur. Polym. J., 49, 940 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Shan, L. Jia, T. Zhao, C. Jin, R. Liu, and Y. Xiao, Fiber. Polym., 18, 2196 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Tokumura, S. Ogo, K. Kume, K. Muramatsu, Q. Wang, Y. Miyake, T. Amagai, and M. Makino, Ecotoxicol. Environ. Saf., 169, 464 (2019).CrossRefGoogle Scholar
  10. 10.
    M. Ba, B. Liang, and C. Wang, Fiber. Polym., 18, 907 (2017).CrossRefGoogle Scholar
  11. 11.
    A. Šehić, J. Vasiljević, I. Jordanov, A. Demšar, J. Medved, I. Jerman, M. Čolović, F. Hewitt, T. R. Hull, and B. Simončič, Fiber. Polym., 19, 1194 (2018).CrossRefGoogle Scholar
  12. 12.
    W. Guo, Y. Hu, X. Wang, P. Zhang, L. Song, and W. Xing, Cellulose, 26, 1247 (2018).CrossRefGoogle Scholar
  13. 13.
    J. J. Cheng, W. J. Qu, and S. H. Sun, Polym. Compos., 40, E1006 (2018).CrossRefGoogle Scholar
  14. 14.
    D. Xu, K. Yu, and K. Qian, Polym. Degrad. Stab., 144, 207 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Guo, G. Liu, Y. Guo, L. Tian, X. Bao, X. Zhang, B. Yang, and J. Cui, J. Polym. Res., 26, 19 (2019).CrossRefGoogle Scholar
  16. 16.
    N. T. Cervin, L. Andersson, J. B. Ng, P. Olin, L. Bergstrom, and L. Wagberg, Biomacromolecules, 14, 503 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Obori, D. Suh, S. Yamasaki, T. Kodama, T. Saito, A. Isogai, and J. Shiomi, Phys. Rev. Appl., 11, 024044 (2019).CrossRefGoogle Scholar
  18. 18.
    A. Baidya, M. A. Ganayee, S. Jakka Ravindran, K. C. Tam, S. K. Das, R. H. Ras, and T. Pradeep, ACS Nano, 11, 11091 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Soeta, S. Fujisawa, T. Saito, L. Berglund, and A. Isogai, ACS Appl. Mater. Interf., 7, 11041 (2015).CrossRefGoogle Scholar
  20. 20.
    T. Jayaramudu, H.-U. Ko, H. C. Kim, J. W. Kim, E. S. Choi, and J. Kim, Compos. Part B, 156, 43 (2019).CrossRefGoogle Scholar
  21. 21.
    H. Kim, J. R. Youn, and Y. S. Song, Nanotechnology, 29, 455702 (2018).CrossRefGoogle Scholar
  22. 22.
    J. M. Silva, H. S. Barud, A. B. Meneguin, V. R. L. Constantino, and S. J. L. Ribeiro, Appl. Clay. Sci., 168, 428 (2019).CrossRefGoogle Scholar
  23. 23.
    M. Santiago-Calvo, V. Blasco, C. Ruiz, R. París, F. Villafañe, and M. Á. Rodríguez-Pérez, J. Appl. Polym. Sci., 136, 47474 (2019).CrossRefGoogle Scholar
  24. 24.
    S. Alasti Bonab, J. Moghaddas, and M. Rezaei, Polymer, 172, 27 (2019).CrossRefGoogle Scholar
  25. 25.
    S. Wang, S. Xue, C. Ge, Q. Ren, D. Zhao, and W. Zhai, J. Cell. Plast., doi:10.1177/0021955X19841053 (2019).Google Scholar
  26. 26.
    X. Ji, D. Chen, J. Shen, and S. Guo, Chem. Eng. J., 370, 1341 (2019).CrossRefGoogle Scholar
  27. 27.
    Z.-J. Cao, W. Liao, S.-X. Wang, H.-B. Zhao, and Y.-Z. Wang, Chem. Eng. J., 361, 1245 (2019).CrossRefGoogle Scholar
  28. 28.
    Y. Chen, C. Weng, Z. Wang, T. Maertens, P. Fan, F. Chen, M. Zhong, J. Tan, and J. Yang, J. Supercrit. Fluids, 147, 107 (2019).CrossRefGoogle Scholar
  29. 29.
    S. Zhang, Z. Ren, S. He, Y. Zhu, and C. Zhu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 188 (2007).CrossRefGoogle Scholar
  30. 30.
    L. Liao, X. Li, Y. Wang, H. Fu, and Y. Li, Ind. Eng. Chem. Res., 55, 11689 (2016).CrossRefGoogle Scholar
  31. 31.
    J. Lubczak and E. Chmiel, Macromol. Res., 27, 543 (2019).CrossRefGoogle Scholar
  32. 32.
    B. Zhao, D.-Y. Liu, W.-J. Liang, F. Li, J.-S. Wang, and Y.-Q. Liu, J. Anal. Appl. Pyrolysis, 124, 247 (2017).CrossRefGoogle Scholar
  33. 33.
    X. Chen, L. Huo, C. Jiao, and S. Li, J. Anal. Appl. Pyrolysis, 100, 186 (2013).CrossRefGoogle Scholar
  34. 34.
    B. Zhao, S. Xu, M. Adeel, and S. Zheng, Polymer, 160, 82 (2019).CrossRefGoogle Scholar
  35. 35.
    C. Luo, J. Zuo, F. Wang, Y. Yuan, F. Lin, and J. Zhao, Macromol. Res., 26, 346 (2018).CrossRefGoogle Scholar
  36. 36.
    X. Liu, J. Guo, W. Tang, H. Li, X. Gu, J. Sun, and S. Zhang, Compos. Part A: Appl. Sci. Manuf., 119, 291 (2019).CrossRefGoogle Scholar
  37. 37.
    W. Xi, L. Qian, and L. Li, Polymers (Basel), 11, 207 (2019).CrossRefGoogle Scholar
  38. 38.
    X. Liu, S. Qin, H. Li, J. Sun, X. Gu, S. Zhang, and J. C. Grunlan, Macromol. Mater. Eng., 304, 1800531 (2018).CrossRefGoogle Scholar
  39. 39.
    H. Ding, K. Huang, S. Li, L. Xu, J. Xia, and M. Li, Polym. Test., 62, 325 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Hansu Kim
    • 1
  • Juhyuk Park
    • 1
  • Kyung Suh Minn
    • 1
  • Seong Yeol Pak
    • 1
  • Doojin Lee
    • 3
  • Jae Ryoun Youn
    • 1
    Email author
  • Young Seok Song
    • 2
    Email author
  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityYonginKorea
  3. 3.School of Polymer Science and EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations