Fibers and Polymers

, Volume 20, Issue 10, pp 2184–2199 | Cite as

Enhanced Salty Water Durability of Halloysite Nanotube Reinforced Epoxy/Basalt Fiber Hybrid Composites

  • Hasan UlusEmail author
  • Halil Burak Kaybal
  • Volkan Eskizeybek
  • Ahmet Avcı


In this study, we report the effect of halloysite nanotube (HNT) modification on salty water aging durability of epoxy (Ep)/basalt fiber (BF) hybrid composites. For this, various amounts of HNTs were introduced into the Ep matrix, and the HNTs/Ep mixture was used to impregnate basalt fabrics to fabricate hybrid laminated composites. The hybrid composites were exposed substantial increases in the tensile strength and the fracture toughness. Besides, after salty water aging for 6 months, the hybrid composites exhibited remarkably improved aging performance with almost 10 % less reduction in both tensile and flexural strengths and fracture toughness compared to the neat basalt-epoxy composites. SEM analysis showed relatively less number of cracks, micro-voids and better interfacial bonding for the 2 wt% HNTs reinforced hybrid composite specimens in comparison to the neat counterpart, similarly conditioned in all cases. The consequences of salty water aging on micro-scale morphology were discussed based on the fracture morphologies to reveal degradation mechanisms in the existence of HNTs reinforcement.


Halloysite nanotube Basalt fiber Salty water aging Fracture toughness Mechanical test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was supported by the Selcuk University Scientific Research Projects under grant number 18101001. Technical support from the Selcuk University Advanced Technology Research & Application Center is much appreciated.


  1. 1.
    A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, Compos. Struct., 53, 21 (2001).CrossRefGoogle Scholar
  2. 2.
    V. M. Karbhari and G. Xian, Compos. Part B-Eng., 40, 41 (2009).CrossRefGoogle Scholar
  3. 3.
    B. Wei, H. Cao, and S. Song, Corros. Sci., 53, 426 (2011).CrossRefGoogle Scholar
  4. 4.
    M. T. Kim, K. Y. Rhee, I. Jung, S. J. Park, and D. Hui, Compos. Part B-Eng., 63, 61 (2014).CrossRefGoogle Scholar
  5. 5.
    G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, H.-J. Kim, and D. H. Jung, Ocean Eng., 108, 393 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Hollaway, Constr. Build. Mater., 24, 2419 (2010).CrossRefGoogle Scholar
  7. 7.
    M. K. Hossain, M. M. R. Chowdhury, K. A. Imran, M. B. Salam, A. Tauhid, M. Hosur, and S. Jeelani, Polym. Degrad. Stab., 99, 180 (2014).CrossRefGoogle Scholar
  8. 8.
    M. C. Lee and N. A. Peppas, J. Compos. Mater., 27, 1146 (1993).CrossRefGoogle Scholar
  9. 9.
    H. Gu, Mater. Des., 30, 867 (2009).CrossRefGoogle Scholar
  10. 10.
    C. Scheffler, T. Förster, E. Mäder, G. Heinrich, S. Hempel, and V. Mechtcherine, J. Non-Cryst. Solids, 355, 2588 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Berozashvili, Adv. Mater. Com. News, Compos Worldwide, 6, 5 (2001).Google Scholar
  12. 12.
    I. Ashcroft, M. A. Wahab, A. Crocombe, D. Hughes, and S. Shaw, Compos. Part A-Appl. S., 32, 45 (2001).CrossRefGoogle Scholar
  13. 13.
    B. Tan and N. L. Thomas, J. Membr. Sci., 514, 595 (2016).CrossRefGoogle Scholar
  14. 14.
    H. Ulus, T. Üstün, V. Eskizeybek, Ö. S. Şahin, A. Avcı, and M. Ekrem, Appl. Surf. Sci., 318, 37 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Ulus, T. Üstün, Ö. S. Şahin, S. E. Karabulut, V. Eskizeybek, and A. Avcı, J. Compos. Mater, 50, 761 (2016).CrossRefGoogle Scholar
  16. 16.
    H. Ulus, Ö. S. Şahin, and A. Avcı, Fiber. Polym., 16, 2627 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Üstün, H. Ulus, S. E. Karabulut, V. Eskizeybek, Ö. S. Şahin, A. Avcı, and O. Demir, Compos. Part B-Eng., 96, 1 (2016).CrossRefGoogle Scholar
  18. 18.
    V. Eskizeybek, H. Ulus, H. B. Kaybal, Ö. S. Şahin, and A. Avcı, Compos. Part B-Eng., 140, 223 (2018).CrossRefGoogle Scholar
  19. 19.
    V. Eskizeybek, A. Avci, and A. Gülce, Compos. Part A-Appl. S., 63, 94 (2014).CrossRefGoogle Scholar
  20. 20.
    V. Eskizeybek, A. Avcı, and A. Gülce, Adv. Compos. Mater, 26, 169 (2017).CrossRefGoogle Scholar
  21. 21.
    A. Abdi, R. Eslami-Farsani, and H. Khosravi, Fiber. Polym., 19, 635 (2018).CrossRefGoogle Scholar
  22. 22.
    J.-K. Kim, C. Hu, R. S. Woo, and M.-L. Sham, Compos. Sci. Technol., 65, 805 (2005).CrossRefGoogle Scholar
  23. 23.
    K. Yano, A. Usuki, and A. Okada, J. Polym. Sci., Part A: Polym. Chem., 35, 2289 (1997).CrossRefGoogle Scholar
  24. 24.
    H. Alamri and I. M. Low, Mater. Des., 42, 214 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Zainuddin, M. Hosur, Y. Zhou, A. Kumar, and S. Jeelani, Mater. Sci. Eng., A, 527, 3091 (2010).CrossRefGoogle Scholar
  26. 26.
    F. Ravari, A. Omrani, A. A. Rostami, and M. Ehsani, Polym. Degrad. Stab., 97, 929 (2012).CrossRefGoogle Scholar
  27. 27.
    W. Liu, S. V. Hoa, and M. Pugh, Compos. Sci. Technol., 65, 2364 (2005).CrossRefGoogle Scholar
  28. 28.
    T. Mohan and K. Kanny, Compos. Part A-Appl. S., 42, 385 (2011).CrossRefGoogle Scholar
  29. 29.
    M. Albdiry and B. Yousif, Mater Des., 57, 279 (2014).CrossRefGoogle Scholar
  30. 30.
    S. Deng, J. Zhang, L. Ye, and J. Wu, Polymer, 49, 5119 (2008).CrossRefGoogle Scholar
  31. 31.
    Y. Ye, H. Chen, J. Wu, and C. M. Chan, Compos. Sci. Technol., 71, 717 (2011).CrossRefGoogle Scholar
  32. 32.
    M. Albdiry and B. Yousif, Mater. Des., 48, 68 (2013).CrossRefGoogle Scholar
  33. 33.
    M. Du, B. Guo, and D. Jia, Eur. Polym. J., 42, 1362 (2006).CrossRefGoogle Scholar
  34. 34.
    M. Liu, B. Guo, M. Du, X. Cai, and D. Jia, Nanotechnol., 18, 455703 (2007).CrossRefGoogle Scholar
  35. 35.
    Y. Ye, H. Chen, J. Wu, and L. Ye, Polymer, 48, 6426 (2007).CrossRefGoogle Scholar
  36. 36.
    D. Marney, L. Russell, D. Wu, T. Nguyen, D. Cramm, N. Rigopoulos, N. Wright, and M. Greaves, Polym. Degrad. Stab., 93, 1971 (2008).CrossRefGoogle Scholar
  37. 37.
    H. Ismail, P. Pasbakhsh, M. A. Fauzi, and A. A. Bakar, Polym. Test., 27, 841 (2008).CrossRefGoogle Scholar
  38. 38.
    K. Hedicke-Höchstötter, G. T. Lim, and V. Altstädt, Compos. Sci. Technol., 69, 330 (2009).CrossRefGoogle Scholar
  39. 39.
    B. Guo, Q. Zou, Y. Lei, M. Du, M. Liu, and D. Jia, Thermochim. Acta, 484, 48 (2009).CrossRefGoogle Scholar
  40. 40.
    M. Du, B. Guo, Y. Lei, M. Liu, and D. Jia, Polymer, 49, 4871 (2008).CrossRefGoogle Scholar
  41. 41.
    N.-Y. Ning, Q.-J. Yin, F. Luo, Q. Zhang, R. Du, and Q. Fu, Polymer, 48, 7374 (2007).CrossRefGoogle Scholar
  42. 42.
    S. Deng, J. Zhang, and L. Ye, Compos. Sci. Technol., 69, 2497 (2009).CrossRefGoogle Scholar
  43. 43.
    M. E. Deniz, O. Özdemir, M. Ozen, and R. Karakuzu, Composites Part B, 53, 355 (2013).CrossRefGoogle Scholar
  44. 44.
    X. Li and Y. J. Weitsman, Compos. Part B-Eng., 35, 451 (2004).CrossRefGoogle Scholar
  45. 45.
    B. C. Kim and S. W. Park, Compos. Struct., 86, 69 (2008).CrossRefGoogle Scholar
  46. 46.
    S. Sugiman, I. K. P. Putra, and P. D. Setyawan, Polym. Degrad. Stab., 134, 311 (2016).CrossRefGoogle Scholar
  47. 47.
    H. B. Kaybal, H. Ulus, O. Demir, Ö. S. Şahin, and A. Avcı, Eng.. Sci. Technol., 21, 399 (2018).Google Scholar
  48. 48.
    T. Üstün, V. Eskizeybek, and A. Avci, Compos. Struct., 150, 124 (2016).CrossRefGoogle Scholar
  49. 49.
    M. Liu, Z. Jia, D. Jia, and C. Zhou, Prog. Polym. Sci., 39, 1498 (2014).CrossRefGoogle Scholar
  50. 50.
    X. Jia, J. Zhu, W. Li, X. Chen, and X. Yang, Compos. Sci. Technol., 110, 35 (2015).CrossRefGoogle Scholar
  51. 51.
    J. Knoll, B. Riecken, N. Kosmann, S. Chandrasekaran, K. Schulte, and B. Fiedler, Compos. Part A-Appl. S., 67, 233 (2014).CrossRefGoogle Scholar
  52. 52.
    L. R. Xu and A. J. Rosakis, Int. J. Solids Struct., 39, 4237 (2002).CrossRefGoogle Scholar
  53. 53.
    H. Alamri and I. M. Low, Polym. Compos., 33, 589 (2012).CrossRefGoogle Scholar
  54. 54.
    H. Alamri and I. M. Low, Compos. Part A-Appl. S., 44, 23 (2013).CrossRefGoogle Scholar
  55. 55.
    P. Moy and F. Karasz, Polym. Eng. Sci., 20, 315 (1980).CrossRefGoogle Scholar
  56. 56.
    N. Berry, J. d’Almeida, F. Barcia, and B. Soares, Polym. Test., 26, 262 (2007).CrossRefGoogle Scholar
  57. 57.
    A. Athijayamani, M. Thiruchitrambalam, U. Natarajan, and B. Pazhanivel, Mater. Sci. Eng., A, 517, 344 (2009).CrossRefGoogle Scholar
  58. 58.
    H. Dhakal, Z. Zhang, and M. Richardson, Compos. Sci. Technol., 67, 1674 (2007).CrossRefGoogle Scholar
  59. 59.
    A. Dorigato, A. Pegoretti, and M. Quaresimin, Mater. Sci. Eng., A, 528, 6324 (2011).CrossRefGoogle Scholar
  60. 60.
    A. T. Seyhan, M. Tanoglu, and K. Schulte, Eng. Fract. Mech., 75, 5151 (2008).CrossRefGoogle Scholar
  61. 61.
    W. Han, S. Chen, J. Campbell, X. Zhang, and Y. Tang, Mater. Chem. Phys., 177, 147 (2016).CrossRefGoogle Scholar
  62. 62.
    M. Sanchez, M. Campo, A. Jiménez-Suárez, and A. Ureña, Compos. Part B-Eng., 45, 1613 (2013).CrossRefGoogle Scholar
  63. 63.
    S. C. Joshi and V. Dikshit, J. Compos. Mater., 46, 665 (2012).CrossRefGoogle Scholar
  64. 64.
    H. J. Kim and D. W. Seo, J. Compos. Mater., 28, 1307 (2006).Google Scholar
  65. 65.
    S. Masoumi and H. Valipour, Modell. Simul. Mater. Sci. Eng., 24, 035011 (2016).CrossRefGoogle Scholar
  66. 66.
    P. Nogueira, C. Ramirez, A. Torres, M. Abad, J. Cano, J. Lopez, I. López-Bueno, and L. Barral, J. Appl. Polym. Sci., 80, 71 (2001).CrossRefGoogle Scholar
  67. 67.
    J. Summerscales, J. Graham-Jones, and R. Pemberton, “Mar. Compos: Des. Perform.”, Woodhead Publishing, 2018.Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Hasan Ulus
    • 1
    Email author
  • Halil Burak Kaybal
    • 2
  • Volkan Eskizeybek
    • 3
  • Ahmet Avcı
    • 4
  1. 1.Department of Mechanical EngineeringKonya Technical UniversityKonyaTurkey
  2. 2.Department of Mechanical EngineeringAmasya UniversityAmasyaTurkey
  3. 3.Department of Materials Science and EngineeringCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  4. 4.Department of Biomedical EngineeringNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations