Advertisement

Fibers and Polymers

, Volume 20, Issue 11, pp 2310–2316 | Cite as

Preparation and Characterization of Surface Modified PPTA Fibers by Ultrasonic-Assisted Hydrogen Peroxide Solutions

  • Zhao JiaEmail author
  • Chunmei Duan
Article
  • 2 Downloads

Abstract

The simplest peroxide, hydrogen peroxide (H2O2) was used to prepare the surface modified poly(p-phenylene terephthalaramide) (PPTA) fibers under the assistant of ultrasonic vibration. Fourier transform infrared spectroscopy (FTIR) spectra indicated the increase of the active polar groups on the surface of the fibers. X-ray photoelectron spectroscopy (XPS) analysis confirmed that more carboxyl groups and hydroxyl groups have been obtained after this treatment. Scanning electron microscope (SEM) showed that the surface roughness of the fibers has been improved accordingly. The interfacial properties of modified PPTA fiber/epoxy composites were investigated by the single fiber pull-out test (SFP). The results showed that the interfacial shear strength (IFSS) of PPTA/epoxy composites was remarkably improved by 42.14 % while the breaking strength was not affected appreciably. The modified fiber presented 26.9 % higher moisture regain compared with the original fiber. It proved to be an efficient method to make the surface modified PPTA fiber for the application of the advanced composites at a relatively low cost.

Keywords

PPTA fiber Modification Structure Ultrasonic Hydrogen peroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors thank the editors and the reviewers for their constructive comments, which helped us to improve the manuscript. We are also grateful to Dr. Zhaohui Jiang, Zengge Guo and Qicai Wang for their highly enlightening suggestions in the revising of the manuscript.

References

  1. 1.
    V. V. Prasad and S. Talupula, Mater. Today.: Proc., 5, 5993 (2018).Google Scholar
  2. 2.
    E. M. Kim and J. Jang, Fiber. Polym., 11, 677 (2010).CrossRefGoogle Scholar
  3. 3.
    T. M. Wright, C. M. Carr, C. A. Grant, V. Lilladhar, and S. J. Russell, Polym. Degrad. Stabil., 121, 193 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Rao, A. J. Waddon, and R. J. Farris, Polyme., 42, 5937 (2001).CrossRefGoogle Scholar
  5. 5.
    A. A. Leal, J. M. Deitzel, S. H. McKnight, and J. W. Gillespie, Polyme., 50, 1228 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Hussain, C. Yorucu, I. Ahmed, R. Hussain, and I. U. Rehman, Surf. Coat. Tech., 258, 458 (2014).CrossRefGoogle Scholar
  7. 7.
    W. Fan, H. Tian, H. Wang, T. Zhang, and S. Wang, Polym. Test., 72, 147 (2018).CrossRefGoogle Scholar
  8. 8.
    J. Chen, Y. Zhu, Q. Ni, Y. Fu, and X. Fu, Appl. Surf. Sci., 321, 103 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Palola, E. Sarlin, S. Kolahgar Azari, V. Koutsos, and J. Vuorinen, Appl. Surf. Sci., 410, 145 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Yuan, W. Wang, D. Yang, X. Zhou, Z. Zhao, L. Zhang, S. Wang, and J. Feng, Surf. Coat. Tech., 344, 614 (2018).CrossRefGoogle Scholar
  11. 11.
    V. B. C. Tan, X. S. Zeng, and V. P. W. Shim, Int. J. Impact. Eng., 35, 1303 (2008).CrossRefGoogle Scholar
  12. 12.
    B. Mercer, E. Zywicz, and P. Papadopoulos, Polyme., 114, 329 (2017).CrossRefGoogle Scholar
  13. 13.
    U. K. Fatema and Y. Gotoh, Surf. Coat. Tech., 206, 3472 (2012).CrossRefGoogle Scholar
  14. 14.
    B.X. Wang, M. Du, J. C. L, Q. Q. Zhou, and L. M. Jin, Appl. Surf. Sci., 349, 333 (2015).CrossRefGoogle Scholar
  15. 15.
    D. E. Yilmaz and A. Vanduin, Polyme., 154, 172 (2018).CrossRefGoogle Scholar
  16. 16.
    R. X. Gu, J. R. Yu, C. C. Hu, L. Chen, J. Zhu, and Z. M. Hu, Appl. Surf. Sci., 258, 10168 (2012).CrossRefGoogle Scholar
  17. 17.
    H. P. Zhang, J. C. Zhang, J. Y. Chen, X. M. Hao, S. Y. Wang, X. X. Feng, and Y. H. Guo, Polym. Degrad. Stabil., 91, 2761 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Li, A. Gu, G. Z. Liang, and L. Yuan, Appl. Surf. Sci., 265, 519 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. Kusano, K. Norrman, J. Drews, F. Leipold, and N. Krebs, Surf. Coat. Tech., 205, 490 (2011).CrossRefGoogle Scholar
  20. 20.
    K. Matsuyama, S. Tanaka, and T. Okuyama, Chem. Eng. J., 246, 106 (2014).CrossRefGoogle Scholar
  21. 21.
    F. Lionetto, F. Balle, and A. Maffezzoli, J. Mater. Process. Tech., 247, 289 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Su, A. Gu, G. Liang, and L. Yuan, Appl. Surf. Sci., 257, 3158 (2011).CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, Z. Jiang, Y. Huang, and Q. Li, Fiber. Polym., 12, 1014 (2011).CrossRefGoogle Scholar
  24. 24.
    J. Singletary, H. Davis, Y. Song, M. K. Ramasubramanian, and V. W. Knoff, J. Mater. Sci., 35, 583 (2000).CrossRefGoogle Scholar
  25. 25.
    J. Jin, H. J. Park, M. S. Rhimsi, and M. Kim, Polym. Eng. Sci., 29, 765 (1989).CrossRefGoogle Scholar
  26. 26.
    J. R. Brown, N. M. Browne, P. J. Burchill, and G. T. Egglestone, Text. Res. J., 53, 214 (1983).CrossRefGoogle Scholar
  27. 27.
    M. C. Andrews and R. J. Young, J. Mater. Sci., 30, 5607 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.College of Textile and GarmentShandong University of TechnologyZiboChina

Personalised recommendations