Advertisement

Fibers and Polymers

, Volume 20, Issue 10, pp 2057–2069 | Cite as

Surface Modified of Cellulose Acetate Electrospun Nanofibers by Polyaniline/β-cyclodextrin Composite for Removal of Cationic Dye from Aqueous Medium

  • Ahmed S. M. Ali
  • M. R. El-AassarEmail author
  • F. S. Hashem
  • N. A. Moussa
Article
  • 26 Downloads

Abstract

This paper concerns with the enhancement of a safe and clean procedure for remediation of water pollution. Cellulose acetate (CA) nanofibers were prepared via electrospinning technique prior to surface modification with polyaniline/β-cyclodextrin (PANI/β-CD) nanocomposite. Morphology and structure of the modified CA nanofibers were characterized by different analysis like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Thermogravimetric analyses (TGA). We studied the influence of modification of CA with PANI/β-CD nanocomposite for removal of cationic dyes from colored aqueous solution in dynamic batch mode. Methylene blue (MB) dye was selected as a cationic dye model for the study. The effects of various parameters like pH, nanosorbent dose, dye concentration and reaction time on the adsorption capacity were studied. Some mathematical isotherm and kinetic models have been utilized to investigate the adsorption mechanism of MB into the CA-PANI/β-CD nanofibers. The reusability of the CA-PANI/β-CD nanofibers was also verified in sequent cycles and rapid process was detected. Different real water samples like tap water, industrial wastewater, municipal wastewater and sea water were applied to test the MB removal efficiency.

Keywords

Nanofibers Cellulose acetate β-cyclodextrin Polyaniline Methylene blue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

Authors of the present paper have not used any external sources of funding in addition to regular financing for scientific investigations provided by the City of Scientific Research and Technological Applications (SRTA-City).

References

  1. 1.
    Z. Aksu, Process Biochemistry, 40, 997 (2005).CrossRefGoogle Scholar
  2. 2.
    L. Wang, X.-L. Wu, W.-H. Xu, X.-J. Huang, J.-H. Liu, and A.-W. Xu, ACS Appl. Mater. Interfaces, 4, 2686 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, and E. Drioli, J. Environ. Manag., 147, 55 (2015).CrossRefGoogle Scholar
  4. 4.
    A. Abd-Elhamid, M. El-Aassar, G. El Fawal, and H. Soliman, Environ. Nanotechnol. Monit. Manage., 11, 100207 (2019).Google Scholar
  5. 5.
    I. A. Salem and M. S. El-Maazawi, Chemosphere, 41, 1173 (2000).PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Y. Al-Ani and Y. Li, J. Taiwan Inst. Chem. Eng., 43, 942 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Zhao, Y. Wang, X. Li, B. Sun, and C. Wang, ACS Appl. Mater. Interfaces, 7, 26649 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Y. Chen, F. He, Y. Ren, H. Peng, and K. Huang, Chem. Eng. J., 249, 79 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Bulut and H. Aydin, Desalination, 194, 259 (2006).CrossRefGoogle Scholar
  10. 10.
    M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, J. Hazard. Mater., 177, 70 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    L. Cottet, C. Almeida, N. Naidek, M. Viante, M. Lopes, and N. Debacher, Appl. Clay Sci., 95, 25 (2014).CrossRefGoogle Scholar
  12. 12.
    Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, and K. Sui, Carbohydr. Polym., 205, 125 (2019).PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao, R. Wang, K. Sui, and Y Tan, Compos. Part B: Eng., 162, 671 (2019).CrossRefGoogle Scholar
  14. 14.
    B. Yang, Z. Tian, L. Zhang, Y. Guo, and S. Yan, J. Water Process Eng., 5, 101 (2015).CrossRefGoogle Scholar
  15. 15.
    M. El-Aassar, M. M. Fouda, and E. R. Kenawy, Adv. Polym. Technol., 32 (2013).Google Scholar
  16. 16.
    M. M. Fouda, M. El-Aassar, and S. S. Al-Deyab, Carbohydr. Polym., 92, 1012 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    J. B. Veluru, K. Satheesh, D. Trivedi, M. V. Ramakrishna, and N. T. Srinivasan, J. Eng. Fiber. Fabr., 2, 25 (2007).Google Scholar
  18. 18.
    F. Kayaci and T. Uyar, Food Chem., 133, 641 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Wang, X. Zhang, X. He, W. Zhang, X. Zhang, and C. Lu, Carbohydr: Polym., 110, 302 (2014).CrossRefGoogle Scholar
  20. 20.
    N. M. Aboamera, A. Mohamed, A. Salama, T. Osman, and A. Khattab, Cellulose, 25, 4155 (2018).CrossRefGoogle Scholar
  21. 21.
    N. Olaru, G. Calin, and L. Olaru, Ind. Eng. Chem. Res., 53, 17968 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Mohy Eldin, Y. Aggour, M. El-Aassar, G. Beghet, and R. Atta, Desalination Water Treat., 57, 4255 (2016).CrossRefGoogle Scholar
  23. 23.
    Y. Ahn, Y. Kang, M. Ku, Y.-H. Yang, S. Jung, and H. Kim, RSC Adv., 3, 14983 (2013).CrossRefGoogle Scholar
  24. 24.
    M. M. Ayad and A. A. El-Nasr, J. Phys. Chem. C, 114, 14377 (2010).CrossRefGoogle Scholar
  25. 25.
    B. Yan, Z. Chen, L. Cai, Z. Chen, J. Fu, and Q. Xu, Appl. Surface Sci., 356, 39 (2015).CrossRefGoogle Scholar
  26. 26.
    G. L. Yuan, N. Kuramoto, and M. Takeishi, Polym. Adv. Technol., 14, 428 (2003).CrossRefGoogle Scholar
  27. 27.
    J. Wang, Y. Cao, B. Sun, and C. Wang, Food Chem., 127, 1680 (2011).CrossRefGoogle Scholar
  28. 28.
    V. Sinha, R. Anitha, S. Ghosh, A. Nanda, and R. Kumria, J. Pharm. Sci., 94, 676 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    M. Rotich, M. Brown, and B. Glass, J. Therm. Anal. Calorim., 73, 671 (2003).CrossRefGoogle Scholar
  30. 30.
    F. Kayaci, H. S. Sen, E. Durgun, and T. Uyar, Food Res. Int., 62, 424 (2014).CrossRefGoogle Scholar
  31. 31.
    E.-J. Seo, S.-G. Min, and M.-J. Choi, J. Microencapsul., 27, 496 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    P. Supaphol, C. Mit-Uppatham, and M. J. J. Nithitanakul, J. Polym. Sci. Part B: Polym. Phys., 43, 3699 (2005).CrossRefGoogle Scholar
  33. 33.
    S. Asman, N. A. Yusof, A. H. Abdullah, and M. J. Haron, Molecules, 17, 1916 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    R. Mukherjee and S. De, J. Hazard. Mater., 265, 8 (2014).PubMedCrossRefGoogle Scholar
  35. 35.
    A. S. ALzaydien, Am. J. Appl. Sci., 6, 1047 (2009).CrossRefGoogle Scholar
  36. 36.
    R. Aravindhan, N. N. Fathima, J. R. Rao, and B. U. Nair, Colloid Surf. A-Physicochem. Eng. Asp., 299, 232 (2007).CrossRefGoogle Scholar
  37. 37.
    M. El-Aassar, M. El-Kady, H. S. Hassan, and S. S. Al-Deyab, J. Taiwan Inst. Chem. Eng., 58, 274 (2016).CrossRefGoogle Scholar
  38. 38.
    M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, and A. Idris, Desalination, 280, 1 (2011).CrossRefGoogle Scholar
  39. 39.
    M. Elkady, M. Mahmoud, and H. Abd-El-Rahman, J. Non-Crystalline Solids, 357, 1118 (2011).CrossRefGoogle Scholar
  40. 40.
    L. dos Santos Silva, J. de Oliveira Carvalho, R. D. de Sousa Bezerra, M. da Silva, F. Ferreira, J. Osajima, and E. da Silva Filho, Molecules, 23, 743 (2018).CrossRefGoogle Scholar
  41. 41.
    A. S. Ibupoto, U. A. Qureshi, F. Ahmed, Z. Khatri, M. Khatri, M. Maqsood, R. Z. Brohi, and I. S. Kim, Chem. Eng. Res. Des., 136, 744 (2018).CrossRefGoogle Scholar
  42. 42.
    M. Abu-Saied, E. Abdel-Halim, M. M. Fouda, and S. S. Al-Deyab, Int. J. Electrochem. Sci., 8, 5121 (2013).Google Scholar
  43. 43.
    A. El Sikaily, A. Khaled, A. E. Nemr, and O. Abdelwahab, Chem. Ecol., 22, 149 (2006).CrossRefGoogle Scholar
  44. 44.
    A. Hernandez-Martínez, J. Lujan-Montelongo, C. Silva-Cuevas, J. D. Mota-Morales, M. Cortez-Valadez, Á. de Jesus Ruíz-Baltazar, M. Cruz, and J. Herrera-Ordonez, React. Funct. Polym., 122, 75 (2018).CrossRefGoogle Scholar
  45. 45.
    M. F. Elkady, M. R. El-Aassar, and H. S. Hassan, Polymers, 8, 177 (2016).PubMedCentralCrossRefGoogle Scholar
  46. 46.
    S. K. Lagergren, “About the Theory of So-called Adsorption of Soluble Substances”, Vol. 24, pp.1–39, Sven. Vetenskapsakad. Handingarl, 1898.Google Scholar
  47. 47.
    Y.-S. Ho and G. McKay, Process. Saf. Environ., 76, 183 (1998).CrossRefGoogle Scholar
  48. 48.
    G. McKay, J. Chem. Technol. Biotechnol., 32, 759 (1982).CrossRefGoogle Scholar
  49. 49.
    Y.-S. Ho, Water Res., 37, 2323 (2003).PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    K. G. Bhattacharyya and A. Sharma, Dyes Pigment., 65, 51 (2005).CrossRefGoogle Scholar
  51. 51.
    K. V. Kumar and A. Kumaran, Biochem. Eng. J., 27, 83 (2005).CrossRefGoogle Scholar
  52. 52.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  53. 53.
    H. Freundlich, J. Phys. Chem., 57, 1100 (1906).Google Scholar
  54. 54.
    S. Allen, G. Mckay, and J. F. Porter, J. Colloid Interface Sci., 280, 322 (2004).PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Ahmed S. M. Ali
    • 1
  • M. R. El-Aassar
    • 2
    • 3
    Email author
  • F. S. Hashem
    • 4
  • N. A. Moussa
    • 4
  1. 1.Pesticides Department, Waste Water Lab, Central LabsMinistry of HealthAlexandriaEgypt
  2. 2.Chemistry Department, College of ScienceJouf UniversitySakakaSaudi Arabia
  3. 3.Polymer Materials Research Department, Advanced Technology and New Material InstituteCity of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab CityAlexandriaEgypt
  4. 4.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations