Advertisement

Fibers and Polymers

, Volume 20, Issue 11, pp 2254–2260 | Cite as

Heat-resistant Poly(methyl methacrylate) Modified by Biomass Syringaldehyde Derivative: Preparation, Thermostability and Transparency

  • Xiaobin Gao
  • Song Mei
  • Xueyong Yong
  • Danyu Zhao
  • Jinpeng Bao
  • Jianping DengEmail author
Article
  • 5 Downloads

Abstract

Poly(methyl methacrylate) (PMMA) has found a lot of practical uses, however, how to efficiently and cost-effectively improve its relatively low thermal properties remains as an intractable academic challenge. This article reports a novel strategy for improving heat-resistance of PMMA by using biomass syringaldehyde. Syringaldehyde methacrylate (SMA) was first synthesized and then used as comonomer to copolymerize with methyl methacrylate (MMA) through bulk polymerization and solution polymerization. The copolymers can be obtained in high yield and demonstrate remarkably improved heat-resistance according to differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and derivative thermogravimetry analyses (DTG). Moreover, the modified PMMA still maintains good light transmittance in visible range. The study provides a new alternative for modifying PMMA, and the modified PMMA may find new applications as heat-resistant polymeric material which cannot routinely achieved by PMMA itself. In addition, SMA as a new type of green heat-resistant modifier derived from renewable biomass syringaldehyde may have potential applications in heat-resistant modification of materials.

Keywords

PMMA Thermostability Biomass-based material Polymer material Syringaldehyde 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21774009).

Supplementary material

12221_2019_9067_MOESM1_ESM.pdf (566 kb)
Heat-resistant Poly(methyl methacrylate) Modified by Biomass Syringaldehyde Derivative: Preparation, Thermostability and Transparency

References

  1. 1.
    S. Gross, D. Camozzo, V. D. Noto, L. Armelao, and E. Tondello, Eur. Polym. J., 43, 673 (2007).CrossRefGoogle Scholar
  2. 2.
    D. J. Carbaugh, J. T. Wright, R. Parthiban, and F. Rahman, Semicond. Sci. Technol., 31, 025010 (2016).CrossRefGoogle Scholar
  3. 3.
    P. Kalakonda and S. Banne, Nanotechnol. Sci. Appl., 10, 45 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    S. Li, J. Shen, and A. E. Tonelli, Polymer, 135, 355 (2018).CrossRefGoogle Scholar
  5. 5.
    H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A. P. Tomsia, and R. O. Ritchie, Adv. Mater., 28, 50 (2016).PubMedCrossRefGoogle Scholar
  6. 6.
    J. M. Kubiak, J. Yan, J. Pietrasik, and K. Matyjaszewski, Polymer, 117, 48 (2017).CrossRefGoogle Scholar
  7. 7.
    K. H. Yoo, I. W. Kim, J. H. Cho, and Y. J. Kwark, Fiber. Polym., 13, 1113 (2012).CrossRefGoogle Scholar
  8. 8.
    T. Li, Z. Zhang, W. Li, C. Liu, J. Wang, and L. An, Colloids Surf., A, 489, 289 (2016).CrossRefGoogle Scholar
  9. 9.
    T. S. Dalavoy, D. P. Wernette, M. Gong, J. V. Sweedler, Y. Lu, B. R. Flachsbart, M. A. Shannon, P. W. Bohn, and D. M. Cropek, Lab Chip, 8, 786 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Zhang, M. Huo, M. Li, T. Li, N. Li, J. Zhou, and J. Jiang, Polymer, 134, 35 (2018).CrossRefGoogle Scholar
  11. 11.
    O. Aviv, S. Ratner, N. Amir, N. Laout, A. Basu, H. Shadmon, N. Beyth, and A. J. Domb, Polym. Adv. Technol., 28, 1334 (2017).CrossRefGoogle Scholar
  12. 12.
    K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, Nat. Mater., 15, 621 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    P. E. Feuser, A. V. Jacques, J. M. C. Arévalo, M. E. M. Rocha, M. C. D. Santos-Silva, C. Sayer, and P. H. H. D. Araujo, J. Nanopart. Res., 18, 104 (2016).CrossRefGoogle Scholar
  14. 14.
    G. He, Y. Song, S. Chen, and L. Wang, J. Mater. Sci., 53, 9721 (2018).CrossRefGoogle Scholar
  15. 15.
    S. Hammani, A. Barhoum, and M. Bechelany, J. Mater. Sci., 53, 1911 (2018).CrossRefGoogle Scholar
  16. 16.
    J. D. Peterson, S. Vyazovkin, and C. A. Wight, Macromol. Rapid Commun., 20, 480 (1999).CrossRefGoogle Scholar
  17. 17.
    J. Meng and Y. Wang, Open J. Org. Polym. Mater., 5, 23 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Zhou, H. Zhang, J. Deng, and Y. Wu, Macromol. Chem. Phys., 217, 2402 (2016).CrossRefGoogle Scholar
  19. 19.
    A. L. Holmberg, K. H. Reno, N. A. Nguyen, R. P. Wool, and T. H. Epps, ACS Macro Lett., 5, 574 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Y. Han, L. Yuan, G. Li, L. Huang, T. Qin, F. Chu, and C. Tang, Polymer, 83, 92 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Bougarech, M. Abid, F. Gouanvé, E. Espuche, S. Abid, R. E. Gharbi, and E. Fleury, Polymer, 54, 5482 (2013).CrossRefGoogle Scholar
  22. 22.
    Z. Wang, L. Yuan, and C. Tang, Acc. Chem. Res., 50, 1762 (2017).PubMedCrossRefGoogle Scholar
  23. 23.
    F. He, K. Jin, J. Sun, and Q. Fang, ACS Sustainable Chem. Eng., 6, 3575 (2018).CrossRefGoogle Scholar
  24. 24.
    C. S. K. Reddy, R. Ghai, Rashmi, and V. C. Kalia, Bioresour. Technol., 87, 137 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Bengtsson, A. Werker, M. Christensson, and T. Welander, Bioresour. Technol., 99, 509 (2008).PubMedCrossRefGoogle Scholar
  26. 26.
    X. Pang, X. Zhuang, Z. Tang, and X. Chen, Biotechnol. J., 5, 1125 (2010).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Xu and B. Guo, Biotechnol. J., 5, 1149 (2010).PubMedCrossRefGoogle Scholar
  28. 28.
    A. S. Figueiredo, L. P. Icart, F. D. Marques, E. R. Fernandes, L. P. Ferreira, G. E. Oliveira, and F. G. Souza Jr, Sci. Total Environ., 647, 88 (2019).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Tanaka, T. Iwata, and M. Iji, ACS Sustainable Chem. Eng., 5, 1485 (2017).CrossRefGoogle Scholar
  30. 30.
    B. Xiao, M. Zheng, J. Pang, Y. Jiang, H. Wang, R. Sun, A. Wang, X. Wang, and T. Zhang, Ind. Eng. Chem. Res., 54, 5862 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Ebringerová and T. Heinze, Macromol. Rapid Commun., 21, 542 (2015).CrossRefGoogle Scholar
  32. 32.
    M. A. K. M. Zahari, H. Ariffin, M. N. Mokhtar, J. Salihon, Y. Shirai, and M. A. Hassan, J. Cleaner Prod., 87, 284 (2015).CrossRefGoogle Scholar
  33. 33.
    W. Ding, S. Wang, K. Yao, M. S. Ganewatta, C. Tang, and M. L. Robertson, ACS Sustainable Chem. Eng., 5, 11470 (2017).CrossRefGoogle Scholar
  34. 34.
    J. Ren, X. Peng, P. Feng, and R. Sun, Fiber. Polym., 14, 16 (2013).CrossRefGoogle Scholar
  35. 35.
    Y. Ge, L. Qin, and Z. Li, Mater. Des., 95, 141 (2016).CrossRefGoogle Scholar
  36. 36.
    X. Shen, B. Wang, P. Huang, J. Wen, and R. Sun, Bioresour. Technol., 206, 57 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    R. Ma, Y. Xu, and X. Zhang, ChemSusChem., 8, 24 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    M. P. Pandey and C. S. Kim, Chem. Eng. Technol., 34, 29 (2011).CrossRefGoogle Scholar
  39. 39.
    P. Picart, H. Liu, P. M. Grande, N. Anders, L. Zhu, J. Klankermayer, W. Leitner, P. D. D. María, U. Schwaneberg, and A. Schallmey, Appl. Microbiol. Biotechnol., 101, 6277 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    G. F. D. Gregorio, R. Prado, C. Vriamont, X. Erdocia, J. Labidi, J. P. Hallett, and T. Welton, ACS Sustainable Chem. Eng., 4, 6031 (2016).CrossRefGoogle Scholar
  41. 41.
    C. S. Lancefield, G. M. M. Rashid, F. Bouxin, A. Wasak, W. Tu, J. Hallett, S. Zein, J. Rodríguez, S. D. Jackson, N. J. Westwood, and T. D. H. Bugg, ACS Sustainable Chem. Eng., 4, 6921 (2016).CrossRefGoogle Scholar
  42. 42.
    H. Zhang, X. Yong, J. Zhou, J. Deng, and Y. Wu, ACS Appl. Mater. Interfaces, 8, 2753 (2016).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Özlem, E. A. Gurel, and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 113, 529 (2015).CrossRefGoogle Scholar
  44. 44.
    S. Özlem and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 104, 161 (2013).CrossRefGoogle Scholar
  45. 45.
    T. Hirata, T. Kashiwagi, and J. E. Brown, Macromolecules, 18, 1410 (1985).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Xiaobin Gao
    • 1
  • Song Mei
    • 1
  • Xueyong Yong
    • 1
  • Danyu Zhao
    • 1
  • Jinpeng Bao
    • 1
  • Jianping Deng
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Resource Engineering and College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations