Advertisement

Fibers and Polymers

, Volume 20, Issue 8, pp 1666–1672 | Cite as

Methylene Blue Removal by Graphene Oxide/Alginate Gel Beads

  • Xianjun LiuEmail author
  • Baochen Cui
  • Shuzhi Liu
  • Qing Ma
Article
  • 44 Downloads

Abstract

Methylene blue (MB) adsorption capacity in water matrices depends highly on the properties of each component of the adsorption systems. The most important one of these is the physicochemical properties of the adsorbent. A composite gel bead was prepared from graphene oxide (GO) and sodium alginate (SA) through a combination of freeze-drying and cross-linking with calcium chloride. Fundamental adsorption behavior of the gel beads for removal of MB from aqueous solutions has been investigated. The pH had mild influence on the adsorption, while adsorption increased as the adsorbent dosage, initial concentration, and contact time increased. The kinetic adsorption fitted the pseudo second-order and intraparticle diffusion models. The isotherm data followed the Langmuir and Freundlich models. The maximum adsorption capacity from the Langmuir isotherm equation reached 357.14 mg/g. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous (ΔG<0, −13.79 kJ/mol), exothermic (ΔH<0, −46.7 kJ/mol). In addition, the adsorption capacity of the regenerated gel beads has little loss until four cycles.

Keywords

Graphene oxide Alginate Gel Methylene blue Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21473028), the Natural Science Foundation of Heilongjiang Province, China (Grant No. B2015011).

References

  1. 1.
    J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu, Q. Y. Niu, W. J. Zhou, and Y. Liang, J. Hazard. Mater., 164, 1517 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    S. Dadfarnia, A. M. Haji Shabani, S. E. Moradi, and S. Emami, Appl. Surf. Sci., 330, 85 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Z. Li, Y. He, F. Li, X. Liu, and J. Yang, Mater. Lett., 134, 115 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. R. Zhang, S. L. Shen, S. Q. Wang, J. Huang, P. Su, Q. R. Wang, and B. X. Zhao, Chem. Eng. J., 239, 250 (2014).CrossRefGoogle Scholar
  5. 5.
    H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng, and X. Yan, Nanoscale Res. Lett., 10, 272 (2015).CrossRefPubMedCentralGoogle Scholar
  6. 6.
    F. Harrelkas, A. Azizi, A. Yaacoubi, A. Benhammou, and M. N. Pons, Desalination, 235, 330 (2008).CrossRefGoogle Scholar
  7. 7.
    Z. N. Shkavro, V. M. Kochkodan, R. Ognyanova, T. Budinova, and V. V. Goncharuk, J. Water Chem. Technol., 32, 101 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Zamani, E. Salahi, and I. Mobasherpour, Res. Chem. Intermed., 40, 1753 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Zamani and N. S. Tabrizi, Res. Chem. Intermed., 41, 7945 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Ma, P. R. Chang, P. Zheng, F. Zhao, and X. Ma, Chem. Eng. J., 240, 595 (2014).CrossRefGoogle Scholar
  11. 11.
    P. Sharma and M. R. Das, J. Chem. Eng. Data, 58, 151 (2013).CrossRefGoogle Scholar
  12. 12.
    X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, and J. Gao, Carbon, 50, 4856 (2012).CrossRefGoogle Scholar
  13. 13.
    F. Liu, S. Chung, G. Oh, and T. S. Seo, ACS Appl. Mater. Interfaces, 4, 922 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Zhao, W. Ren, and H. M. Cheng, J. Mater. Chem., 22, 20197 (2012).CrossRefGoogle Scholar
  15. 15.
    B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, J. Environ. Chem. Eng., 1, 1044 (2013).CrossRefGoogle Scholar
  16. 16.
    H. T. Zhu, T. Chen, J. Q. Liu, and D. Li, RSC Adv., 8, 2616 (2018).CrossRefGoogle Scholar
  17. 17.
    Y. H. Li, Q. J. Du, T. H. Liu, J. K. Sun, Y. H. Wang, S. L. Wu, Z. H. Wang, Y. Z. Xia, and L. H. Xia, Carbohydr. Polym., 95, 501 (2013).CrossRefPubMedGoogle Scholar
  18. 18.
    G. Uyar, H. Kaygusuz, and F. B. Erim, React. Funct. Polym., 106, 1 (2016).CrossRefGoogle Scholar
  19. 19.
    G. Balkız, E. Pingo, N. Kahya, H. Kaygusuz, and F. B. Erim, Water Air Soil Pollut., 229, 2 (2018).CrossRefGoogle Scholar
  20. 20.
    N. Kahya, S. Bener, H. Kaygusuz, G. Akın-Evingür, and F. B. Erim, Chem. Eng. Commun., 205, 881 (2018).CrossRefGoogle Scholar
  21. 21.
    L. Gan, H. Li, L. Chen, L. Xu, J. Liu, A. Geng, C. Mei, and S. Shang, Colloid Polym. Sci., 296, 607 (2018).CrossRefGoogle Scholar
  22. 22.
    H. Kaygusuz, G. A. Evingür, Ö. Pekcan, R. von Klitzing, and F. B. Erim, Int. J. Biol. Macromol., 92, 220 (2016).CrossRefPubMedGoogle Scholar
  23. 23.
    Y. Wan, X. Chen, G. Xiong, R. Guo, and H. Luo, Mater. Express, 4, 429 (2014).CrossRefGoogle Scholar
  24. 24.
    T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, and D. Wu, Colloids Surf., B, 90, 197 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, and L. Xia, Chem. Eng. Res. Des., 91, 361 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Zamani and N. S. Tabrizi, Res. Chem. Intermed., 41, 7945 (2015).CrossRefGoogle Scholar
  27. 27.
    T. Ma, P. R. Chang, P. Zheng, F. Zhao, and X. Ma, Chem. Eng. J., 240, 595 (2014).CrossRefGoogle Scholar
  28. 28.
    Y. Wu, H. Luo, H. Wang, C. Wang, J. Zhang, and Z. Zhang, J. Colloid Interf. Sci., 394, 183 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Xianjun Liu
    • 1
    • 2
    Email author
  • Baochen Cui
    • 1
  • Shuzhi Liu
    • 1
  • Qing Ma
    • 2
  1. 1.College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqingP. R. China
  2. 2.Qitaihe Baotailong Coal & Coal Chemicals Public Co., Ltd.QitaiheP. R. China

Personalised recommendations