Fibers and Polymers

, Volume 20, Issue 2, pp 337–347 | Cite as

Electrospun Spandex Nanofiber Webs with Ionic Liquid for Highly Sensitive, Low Hysteresis Piezocapacitive Sensor

  • Mohammad Shamim Reza
  • Kevin Ray Ayag
  • Mi Kyong Yoo
  • Kap Jin KimEmail author
  • Hongdoo KimEmail author


Electrospun Spandex nanofiber webs having very high amount of nano-sized open cell can be used as a piezocapacitive sensor for monitoring both static and dynamic pressures due to excellent electrospinnability and very good elastic properties. Compared to our previously reported SBS and TPU electrospun nanoweb, Spandex showed relatively linear increase of capacitance with applied pressure and restored its initial thickness when the pressure was released due to the improved resilience and elasticity. Moreover, small amount of ionic liquid (IL) was added in Spandex dope solution to increase the sensitivity of sensor to pressure, which induced very large amount of capacitance change with pressure, as well as reducing the capacitance-pressure hysteresis. In this work, hysteresis of the sensor was assessed through measuring the capacitance values during 20 cyclic loading and unloading and was improved significantly from 7.5 % to 1.8 %. Creep and stress relaxation behaviors were also tested through measuring capacitance under the constant loading and loading under the constant capacitance as a function of time respectively, using a dynamic pressure tester and an LCR meter. The results are reported in detail.


Spandex Electrospinning Capacitive sensor Nanofiber Hysteresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Li, P.-M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, J. Microelectromechan. Syst., 17, 334 (2008).CrossRefGoogle Scholar
  2. 2.
    G. Cannata, M. Maggiali, G. Metta, and G. Sandini, In Proceedings of IEEE Intl. Conf. on Multisensor Fusion and Integration for Intelligent Syst., Seoul, Korea, 434–438, Aug. 20–22, 2008.Google Scholar
  3. 3.
    A. Zribi and J. Fortin, “Functional Thin Films and Nanostructures for Sensors: Synthesis, Physics and Application”, Ch.2, pp.978–387, Springer, 2009.CrossRefGoogle Scholar
  4. 4.
    M. N. H. Nishiyama, IEEE Trans., 17, 477 (1994).Google Scholar
  5. 5.
    F. He, Q.-A. Huang, and M. Qin, Sens. Actuators, A, 135, 507 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Jian, C. Wang, Q. Wang, H. Wang, K. Xia, Z. Yin, M. Zhang, X. Liang, and Y. Zhang, Sci. China Mater., 57, 1 (2017).Google Scholar
  7. 7.
    Y. J. Jeong, T. I. Oh, E. J. Woo, and K. J. Kim, “Integration of Piezo-capacitive and Piezo-electric Nanoweb Based Pressure Sensors for Imaging of Static and Dynamic Pressure Distribution”, 2017 39th Annual Intl. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.21–24, Seogwipo, Jeju, South Korea, Jul. 11–15, 2017.Google Scholar
  8. 8.
    B. Nie, R. Li, J. D. Brandt, and T. Pan, Lab Chip, 14, 1107 (2014).CrossRefGoogle Scholar
  9. 9.
    T.-H.-N. Dinh, E. Martincic, E. Dufour-Gergam, and P.-Y. Joubert, J. Sensors, 2017, Article ID 8235729 (2017).Google Scholar
  10. 10.
    K. J. Kim, Y. J. Ahn, S. Y. Lee, and S. Yoon, 2nd Intl. Conf. on Electrospinning-2012, 70, Jeju, Korea, May 29-June 1, 2012.Google Scholar
  11. 11.
    T. H. N. Dinh, P.-Y. Joubert, E. Martincic, and E. Dufour-Gergam, Sensors, 2014 IEEE, pp.855–858, Valencia, Spain, Nov. 2–5, 2014.CrossRefGoogle Scholar
  12. 12.
    M.-Q. Liu, C. Wang, and N.-Y. Kim, Sensors, 17, 284 (2017).CrossRefGoogle Scholar
  13. 13.
    T. Senthil, G. George, and A. Srinivasan in “Advances in Polymer Materials and Technology”, 1st ed. (A. Srinivasan and S. Bandyopadhyay Eds.), Ch.5, pp.149–218, CRC Press, 2016.Google Scholar
  14. 14.
    P. Sathiyanathan, A. A. Prabu, and K. J. Kim, Macromol. Res., 24, 670 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, and C. Xu, Smart Mater. Struct., 20, 7 (2011).Google Scholar
  16. 16.
    E. H. Kim and J. H. Kim, Text. Sci. Eng., 53, 75 (2016).CrossRefGoogle Scholar
  17. 17.
    S. B. Kim, S. Y. Lee, and H. S. Kim, Text. Sci. Eng., 53, 97 (2016).CrossRefGoogle Scholar
  18. 18.
    M. H. Kim, H. C. Kim, and W. H. Park, Text. Sci. Eng., 54, 97 (2017).Google Scholar
  19. 19.
    H. Zhuo, J. Hu, S. Chen, and L. Yeung, J. Appl. Polym. Sci., 109, 406 (2008).CrossRefGoogle Scholar
  20. 20.
    R. Iani, M. Kotaki, and S. Ramakrishna, Nanotechnology, 16, 208 (2005).CrossRefGoogle Scholar
  21. 21.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  22. 22.
    H. J. Qi and M. C. Boyee, Mech. Mater., 37, 23 (2005).CrossRefGoogle Scholar
  23. 23.
    S. Lee, Y. Ahn, A. A. Prabu, and K. J. Kim, J. Fiber Bioeng. Inform., 6, 369 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Lambour, F. Mechin, and J. P. Pascault, Polym. Eng. Sci., 42, 68 (2002).CrossRefGoogle Scholar
  25. 25.
    R. T. Selvan, M. K. Yoo, S. K. Hong, H. Kim, K. J. Kim, “2016 Fall Joint Meeting of Korea Fiber Society and the Korean Society of Dyers and Finishers”, p.147, BEXCO, Busan, Korea, Nov. 3–4, 2016.Google Scholar
  26. 26.
    A. Sahnoune, “Forming and Applications of Thermoplastic Vulcanizates”, The 5th Intl. Conf. on New Opportunities for Thermoplastic Elastomers (TPE 2002), p.141, Brussels, Belgium, June 24–25, 2002.Google Scholar
  27. 27.
    H. J. Kim and H. G. Jeon, Patent Application Publication, US, 0187348 A1, Jul. 3, 2014.Google Scholar
  28. 28.
    C. Hepburn Ed., “Polyurethane Elastomers”, 2nd ed., Chap.1, pp.1–27, Elsevier Appled Science, 2012.Google Scholar
  29. 29.
    J. Bai, H. Li, Z. Shi, M. Tian, and J. Yin, J. RSC Adv., 5, 45376 (2015).CrossRefGoogle Scholar
  30. 30.
    M. S. Reza, M. K. Yoo, H. Kim, and K. J. Kim, Intl. Conf. on Adv. Polym. for Sci. and Technol. (APST-2016), p.49, Vellore, India, Oct. 24–26, 2016.Google Scholar
  31. 31.
    M. S. Reza, M. K. Yoo, K. J. Kim, and H. Kim, 2017 Spring Conference of Korea Fiber Society, p.170, Daejeon, Korea, Apr. 27–28, 2017.Google Scholar
  32. 32.
    E. S. Guerra and E. V. Lima, “Handbook of Polymer Synthesis, Characterization, and Processing”, John Wiley & Sons Inc., Hoboken, New Jersey, USA, 2013.CrossRefGoogle Scholar
  33. 33.
    P. K. Behera, K. M. Usha, P. K. Guchhait, D. Jehnichen, A. Das, B. Voit, and N. K. Singha, RCS Adv., 6, 99404 (2016).Google Scholar
  34. 34.
    M. L. Jin, S. Park, Y. Lee, J. H. Lee, J. Chung, J. S. Kim, J.-S. Kim, S. Y. Kim, E. Jee, D. W. Kim, J. W. Chung, S. G. Lee, D. Choi, H.-T. Jung, and D. H. Kim, Adv. Mater., 29, 1605973 (2017).CrossRefGoogle Scholar
  35. 35.
    S. Y. Kim, E. Jee, J. S. Kim, and D. H. Kim, RSC Adv., 7, 23820 (2017).CrossRefGoogle Scholar
  36. 36.
    H. Zhou, H. Wang, H. Niu, and T. Lin, Sci. Rep., 5, 15683 (2015).CrossRefGoogle Scholar
  37. 37.
    A. G. Chakespari, A. Rajabipour, and Mobi, Adv. J. Food Sci. Technol., 2, 200 (2010).Google Scholar
  38. 38.
    E. Rainde, R. Diaz-Callejo, M. G. Prolongo, R. M. Masegosa, and C. Salom, “Polymer Viscoelasticity”, p.392, CRC Press, 1999.CrossRefGoogle Scholar
  39. 39.
    American Fiber Manufacturers Association, Inc., Spandex (Alternatively Elastane).Google Scholar
  40. 40.
    P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Phys. Rev. B, 66, 052105 (2002).CrossRefGoogle Scholar
  41. 41.
    E. Thoms, P. Sippel, D. Reuter, M. Weiß, A. Loidl, and S. Krohns, Sci. Rep., 7, 7463 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials Engineering for Information & ElectronicsKyung Hee UniversityYonginKorea

Personalised recommendations