Fibers and Polymers

, Volume 20, Issue 2, pp 440–449 | Cite as

The Anti-compaction Behavior of Aramid Fiber Based Polyvinylidene Fluoride Composite Separation Membranes

  • Hongbin LiEmail author
  • Wenying Shi
  • Shuo Mei
  • Jinchao Li
  • Qiyun Du
  • Longwei Qin
  • Haixia Zhang


Poly(p-phenylene terephthalamide) (PPTA), as the raw polymer material of Aramid fiber-1414, has high modulus and high strength which is commonly used in the reinforced composites. However, the general blending often accompany the microphase incompatibility in polymer matrix. In this study, PPTA molecules were incorporated into poly(vinylidene fluoride) (PVDF) membrane matrix through in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution and PPTA/PVDF molecular composite membranes were prepared via the subsequent nonsolvent induced phase separation (NIPS) process. The anti-compaction properties of resulted PPTA/PVDF molecular composite membranes were systematically investigated including the variations of bursting pressure and membrane thickness, porosity, pure water flux under different pressures. The results suggested that membrane comprehensive anticompaction properties were improved with the increasing of PPTA content in PVDF membrane matrix. Combining the variation trends of membrane anti-compaction properties with morphologies, the compaction-deformation evolution processes of two membrane pore types (sponge-like and finger-like pores) were proposed at the end.


PVDF membrane PPTA Anti-compaction properties In situ polycondensation Bursting pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Madaeni, S. Zinadini, and V. Vatanpour, J. Membr. Sci., 380, 155 (2011).CrossRefGoogle Scholar
  2. 2.
    R. Z. Pang, J. S. Li, K. J. Wei, and J. Y. Shen, J. Colloid Interface Sci., 364, 373 (2011).CrossRefGoogle Scholar
  3. 3.
    E. Yuliwati, A. F. Ismail, T. Matsuura, M. A. Kassim, and M. S. Abdullah, Desalination, 283, 214 (2011).CrossRefGoogle Scholar
  4. 4.
    F. Liu, N. A. Hashim, Y. T. Liu, and M. R. Abed, J. Membr. Sci., 375, 1 (2011).CrossRefGoogle Scholar
  5. 5.
    L. P. Zhu, J. Z. Yu, Y. Y. Xu, Z. Y. Xi, and B. K. Zhu, Colloids Surf., B: Biointerfaces, 69, 152 (2009).CrossRefGoogle Scholar
  6. 6.
    Y. H. Zhao, B. K. Zhu, L. Kong, and Y. Y. Xu, Langmuir, 23, 5779 (2007).CrossRefGoogle Scholar
  7. 7.
    M. M. Nasef and E. S. Hegazy, Prog. Polym. Sci., 29, 499 (2004).CrossRefGoogle Scholar
  8. 8.
    N. A. Hashim, F. Liu, M. R. Moghareh, and K. Li, J. Membr. Sci., 415, 399 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. L. Ji, J. H. Ma, and B. R. Liang, Mater. Lett., 59, 1997 (2005).CrossRefGoogle Scholar
  10. 10.
    J. B. Woo, H. J. Won, and H. P. Yun, Synth. Met., 132, 239 (2003).CrossRefGoogle Scholar
  11. 11.
    S. G. Feng, Y. M. Shang, S. B. Wang, X. F. Xie, Y. Z. Wang, Y. W. Wang, and J. M. Xu, J. Membr. Sci., 346, 105 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. J. Huang, Y. S. Ye, Y. J. Syu, B. J. Hwang, and F. C. Chang, J. Power Sources, 208, 144 (2012).CrossRefGoogle Scholar
  13. 13.
    T. Z. Fu, C. J. Zhao, S. L. Zhong, G. Zhang, K. Shao, H. Q. Zhang, J. Wang, and H. Na, J. Power Sources, 165, 708 (2007).CrossRefGoogle Scholar
  14. 14.
    M. M. Han, G. Zhang, M. Y. Li, S. Wang, Z. G. Liu, H. T. Li, Y. Zhang, D. Xu, J. Wang, J. Ni, and H. Na, J. Power Sources, 196, 9916 (2011).CrossRefGoogle Scholar
  15. 15.
    B. Vaughan, J. Peter, E. Marand, M. Bleha, and M. Bleha, J. Membr. Sci., 316, 153 (2008).CrossRefGoogle Scholar
  16. 16.
    F. Liu, M. M. Tao, and X. L. Xue, Procedia Engineering, 44, 1433 (2012).CrossRefGoogle Scholar
  17. 17.
    P. Y. Zhang, Z. L. Xu, H. Yang, Y. M. Wei, and W. Z. Wu, Chem. Eng. Sci., 97, 296 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Rao, A. J. Waddon, and R. J. Farris, Polymer, 42, 5925 (2001).CrossRefGoogle Scholar
  19. 19.
    A. Knijnenberg, J. Bos, and T. J. Dingemans, Polymer, 51, 1887 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Stade, M. Kallioinen, A. Mikkola, T. Tuuva, and M. Mänttäri, Sep. Purif. Technol., 118, 127 (2013).CrossRefGoogle Scholar
  21. 21.
    K. M. Persson, V. Gekas, and G. Trägårdh, J. Membr. Sci., 100, 155 (1995).CrossRefGoogle Scholar
  22. 22.
    K. Ebert, D. Fritsch, J. Koll, and C. Tjahjawiguna, J. Membr. Sci., 233, 71 (2004).CrossRefGoogle Scholar
  23. 23.
    P. Aerts, A. R. Greenberg, R. Leysen, W. B. Krantz, V. E. Reinsch, and P. A. Jacobs, Sep. Purif. Technol., 22-23, 663 (2001).CrossRefGoogle Scholar
  24. 24.
    N. A. Ochoa, M. Masuelli, and J. Marchese, J. Membr. Sci., 226, 203 (2003).CrossRefGoogle Scholar
  25. 25.
    H. B. Li, W. Y. Shi, Y. F. Zhang, R. Zhou, and H. X. Zhang, Appl. Surf. Sci., 346, 134 (2015).CrossRefGoogle Scholar
  26. 26.
    H. B. Li, W. Y. Shi, Y. F. Zhang, and R. Zhou, J. Polym. Res., 22, 8 (2015).CrossRefGoogle Scholar
  27. 27.
    O. Kedem and A. Katchalsky, J. Gen. Physiol., 45, 143 (1961).CrossRefGoogle Scholar
  28. 28.
    X. Feng, Y. F. Guo, X. Chen, Y. P. Zhao, J. X. Li, X. L. He, and L. Chen, Desalination, 290, 89 (2012).CrossRefGoogle Scholar
  29. 29.
    S. S. Prakash, L. F. Francis, and L. E. Scriven, J. Membr. Sci., 313, 135 (2008).CrossRefGoogle Scholar
  30. 30.
    Q. T. Nguyena, Q. T. Alaoui, H. H. Yang, and C. Mbarecka, J. Membr. Sci., 358, 13 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Hongbin Li
    • 1
    Email author
  • Wenying Shi
    • 1
  • Shuo Mei
    • 2
  • Jinchao Li
    • 1
  • Qiyun Du
    • 3
  • Longwei Qin
    • 1
  • Haixia Zhang
    • 1
  1. 1.School of Textiles Engineering, Henan Engineering Laboratory of New Textiles DevelopmentHenan University of EngineeringZhengzhouP.R. China
  2. 2.School of Textiles ScienceZhongyuan University of TechnologyZhengzhouP.R. China
  3. 3.State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials and Engineering, Tianjin Polytechnic UniversityTianjinP.R. China

Personalised recommendations