Advertisement

Fibers and Polymers

, Volume 20, Issue 2, pp 413–420 | Cite as

Development of Hybrid Composites with Improved Mechanical and Self-healing Properties

  • Muhammad Latif
  • C. Naga Kumar
  • M.N. Prabhakar
  • Jung-il SongEmail author
Article
  • 12 Downloads

Abstract

Self-repair materials or self-healing composites had made a prominent role in present scenario, which can heal the damages occurred by accidents inside and outside body by itself without any external efforts. In the present study hybrid matrix, trimethoxy propyl silane (TMPS) treated carbon fibers and vascular tube reinforced hybrid matrix self-healing composites are fabricated by VARTM technique. Tensile, flexural and low velocity impact properties of the composites were tested. Self-healing effect is compared through low velocity impact test by comparing the strength before damage and after healing. Three types of healing agents i.e., vinyl ester, epoxy and hybrid resin were used in vascular tubes. Hybrid resin filled vascular tubes inserted composites are proved to be the best with 98.03 % healing efficiency. Characterization with C-Scan is done to know damage effect inside the composite. The tensile and flexural strengths of composites with vascular tubes are 249.94 and 184.91 MPa respectively. The overall results concluded that the manufactured self-healing composites have both mechanical strength and self-healing performance. Thus this approach provides a novel path to researchers for the development of self-healing composites in an economical way.

Keywords

Hybrid matrix Carbon fabric Trimethoxy propyl silane Mechanical properties Self-healing composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Krishan Chawla in “Composite Materials”, Springer Link, Birmingham, USA, 2012.Google Scholar
  2. 2.
    H. Abramovich in “Stability and Vibrations of Thin Walled Composite Structures”, Elsevier Science & Technology; Woodhead Publishing, United Kingdom, 2017.Google Scholar
  3. 3.
    S.-J. Park and M.-K. Seo, Interface Sci. Technol., 21, 1 (2018).CrossRefGoogle Scholar
  4. 4.
    Ravindra K. Dhir OBE, Jorge de Brito, Raman Mangabhai, Chao Qun Lye in “3 Production and Properties of Copper Slag’, Sustainable Construction Materials: Copper Slag”, 27–86, Sustainable Construction Materials, Woodhead Publishing Series in Civil and Structural Engineering, United Kingdom, 2017.Google Scholar
  5. 5.
    D. Ratna in “Handbook of Thermoset Resins”, ISmithers Rapra Publishing, 2009.Google Scholar
  6. 6.
    Rocio Yaneli Aguirre-Loredo, Gonzalo Velazquez, Miguel C. Gutierrez, Javier Castro-Rosas, Esmeralda Rangel-Vargas, Carlos Alberto Gómez-Aldapa, Food Packaging and Shelf Life, 17, 162 (2018).Google Scholar
  7. 7.
    M. Biron in “Thermosets and Composites”, 2nd ed., Elsevier, Waltham, USA, 2013.Google Scholar
  8. 8.
    J. M. Margolis in “Advanced Thermoset Composites: Industrial and Commercial Applications”, Van Nostrand Reinhold, 1986.Google Scholar
  9. 9.
    S. Beland in “High-performance Thermoplastic Resins and Their Composites”, William Andrew, Canada, 2012.Google Scholar
  10. 10.
    M. N. Prabhakar, A. U. R. Shah, and J.-I. Song, Carbohydr. Polym., 168, 201 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Flynn, A. Amiri, and C. Ulven, Mater. Des., 102, 21 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Venkata Ramana and S. Ramprasad, Materials Today: Proceedings, 4, 8654 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Kumar, B. Gangil, L. Prasad, and V. Kumar Patel, Materials Today: Proceedings, 4, 9576 (2017).CrossRefGoogle Scholar
  14. 14.
    D. K. Jesthi, P. Mandal, A. K. Rout, and R. K. Nayak, Procedia Manufacturing, 20, 530 (2018).CrossRefGoogle Scholar
  15. 15.
    J. Liang, M. C. Saha, and M. C. Altan, Procedia Engineering, 56, 814 (2013).CrossRefGoogle Scholar
  16. 16.
    T. Alomayri, F. U. A. Shaikh, and I. M. Low, Mater. Des., 57, 360 (2014).CrossRefGoogle Scholar
  17. 17.
    R. Haik, E. Adiel Sasi, and A. Peled, Cement and Concrete Composites, 80, 1 (2017).CrossRefGoogle Scholar
  18. 18.
    D. Cai, G. Zhou, X. Wang, C. Li, and J. Deng, Polymer Testing, 58, 142 (2017).CrossRefGoogle Scholar
  19. 19.
    M. M. Houck and J. A. Siegel in “Fundamentals of Forensic Science”, 3rd ed., Academic Press, 2015.Google Scholar
  20. 20.
    S.-B. Park, D.-W. Lee, and J.-I. Song, Int. J. Precision Eng. Manufact., 19, 441 (2018).CrossRefGoogle Scholar
  21. 21.
    M. Parvinzadeh, Global J. Phys. Chem., 3, 2 (2012).Google Scholar
  22. 22.
    B. Wang, Q. Fu, T. Yin, H. Li, L. Qi, and Y. Fu, Carbon, 139, 45 (2018).CrossRefGoogle Scholar
  23. 23.
    J. Donnini, V. Corinaldesi, and A. Nanni, Compos. Part B: Eng., 88, 220 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Ma, T. Yokozeki, M. Ueda, T. Sugahara, Y. Yang, and H. Hamada, Compos. Sci. Technol., 151, 268 (2017).CrossRefGoogle Scholar
  25. 25.
    R. S. Trask, H. R. Williams, and I. P. Bond, Bioinspiration & Biomimetics, 12, 1 (2007).CrossRefGoogle Scholar
  26. 26.
    S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, and P. T. Curtis, Compos. Pt. A-Appl. Sci. Manuf., 32, 1767 (2001).CrossRefGoogle Scholar
  27. 27.
    R. P. Woo and K. M. O’Conner, J. Appl. Phys., 52, 5953 (1982).Google Scholar
  28. 28.
    M. R. Kessler, Part G: J. Aerospace Eng., 221, 479 (2007).Google Scholar
  29. 29.
    Y. Wang, D. T. Pham, and C. Ji, Cogent Engineering, 2, 1075686 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Muhammad Latif
    • 1
  • C. Naga Kumar
    • 1
  • M.N. Prabhakar
    • 1
  • Jung-il Song
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringChangwon National UniversityChangwonKorea

Personalised recommendations