Advertisement

Fibers and Polymers

, Volume 20, Issue 2, pp 271–279 | Cite as

Effect of Silkworm Variety on Characteristics of Raw Sericin in Silk

  • Su Jin Kim
  • In Chul UmEmail author
Article
  • 14 Downloads

Abstract

Silk sericin has been studied for application in the biomedical and cosmetic fields, given its good water retention and wound-healing properties. Although sericin can be obtained by extraction in hot water, this leads to molecular degradation. Recently, it was reported that raw silk can be used as a binder to prepare non-woven silk fabrics using character of sericin. Therefore, a better understanding of the characteristics of raw sericin is required for more effective utilization. In the present study, the effect of silkworm variety on the characteristics of raw sericin was examined. The amounts of sericin and non-protein materials were found to differ depending on the silkworm variety. The crystallinity indexes of the silk resulting from degumming and heat treatment varied slightly with the silkworm variety. The difference in the tensile strengths of silk yarns spun from raw and degummed silk filaments was found to be highly dependent on the silkworm variety, with the strength decreasing in the order N74 > Imbakgalwon > Baekokjam > Wonwon 126. The extent of increases in the tensile strength and elongation of the silk yarn after hot-press treatment was strongly influenced by the silkworm variety, given the amount of raw sericin differed with the silkworm variety. It is thought that the use of raw sericin from an appropriate silkworm variety will accelerate the development of sericin products in both the cosmetic and biomedical fields.

Keywords

Raw sericin Silkworm variety Heat treatment Mechanical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Jang and I. C. Um, Eur. Polym. J., 93, 761 (2017).CrossRefGoogle Scholar
  2. 2.
    M. N. Padamwar, A. P. Pawar, A. V. Daithankar, and K. R. Mahadik, J. Cosmet. Dermatol., 4, 250 (2005).CrossRefGoogle Scholar
  3. 3.
    P. Aramwit, S. Kanokpanont, W. De-Eknamkul, and T. Srichana, J. Biosci. Bioeng., 107, 556 (2009).CrossRefGoogle Scholar
  4. 4.
    N. Nagai, T. Murao, Y. Ito, N. Okamoto, and M. Sasaki, Biol. Pharm. Bull., 32, 933 (2009).CrossRefGoogle Scholar
  5. 5.
    M. L. Gulrajani, K. P. Brahma, P. S. Kumar, and R. Purwar, J. Appl. Polym. Sci., 109, 314 (2008).CrossRefGoogle Scholar
  6. 6.
    N. Suzuki, A. Fujimura, T. Nagai, I. Mizumoto, T. Itami, H. Hatate, T. Nozawa, N. Kato, T. Nomoto, and B. Yoda, Biofactors, 21, 329 (2004).CrossRefGoogle Scholar
  7. 7.
    R. Dash, M. Mandal, S. K. Ghosh, and S. C. Kundu, Mol. Cell. Biochem., 311, 111 (2008).CrossRefGoogle Scholar
  8. 8.
    X. Zhang, M. M. R. Khan, T. Yamamoto, M. Tsukada, and H. Morikawa, Int. J. Biol. Macromol., 50, 337 (2012).CrossRefGoogle Scholar
  9. 9.
    R. Zhao, X. Li, B. Sun, Y. Zhang, D. Zhang, Z. Tang, X. Chen, and C. Wang, Int. J. Biol. Macromol. 68, 92 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Y. Kweon, J. H. Yeo, K. G. Lee, Y. W. Lee, Y. H. Park, J. H. Nahm, and C. S. Cho, Macromol. Rapid Commun., 21, 1302 (2000).CrossRefGoogle Scholar
  11. 11.
    L. J. Zhu, M. Arai, and K. Hirabayashi, J. Seric. Sci. Jpn. 64, 415 (1995).Google Scholar
  12. 12.
    L. J. Zhu, M. Arai, and K. Hirabayashi, J. Seric. Sci. Jpn. 65, 270 (1996).Google Scholar
  13. 13.
    Y. N. Jo, B. D. Park, and I. C. Um, Int. J. Biol. Macromol., 81, 936 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Nishida, M. Yamada, T. Kanazawa, Y. Takashima, K. Ouchi, and H. Okada, Int. J. Pharm., 407, 44 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. N. Jo and I. C. Um, Int. J. Biol. Macromol., 78, 287 (2015).CrossRefGoogle Scholar
  16. 16.
    H. Yun, M. K. Kim, H. W. Kwak, J. Y. Lee, M. H. Kim, and K. H. Lee, Int. J. Biol. Macromol., 82, 945 (2016).CrossRefGoogle Scholar
  17. 17.
    H. Oh, J. Y. Lee, A. Kim, C. S. Ki, J. W. Kim, Y. H. Park, and K. H. Lee, Fiber. Polym., 8, 470 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. Q. Zhang, M. L. Tao, W. D. Shen, Y. Z. Zhou, Y. Ding, Y. Ma, and W. L. Zhou, Biomaterials, 25, 3751 (2004).CrossRefGoogle Scholar
  19. 19.
    S. K. Das, T. Dey, and S. C. Kundu, RSC Adv., 4, 2137 (2014).CrossRefGoogle Scholar
  20. 20.
    K. Y. Cho, J. Y. Moon, Y. W. Lee, K. G. Lee, J. H. Yeo, H. Y. Kweon, K. H. Kim, and C. S. Cho, Int. J. Biol. Macromol., 32, 36 (2003).CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Biotechnol. Adv., 20, 91 (2002).CrossRefGoogle Scholar
  22. 22.
    T. Siritientong, A. Angspatt, J. Ratanavaraporn, and P. Aramwit, Pharm. Res., 31, 104 (2014).CrossRefGoogle Scholar
  23. 23.
    P. Aramwit, O. Keongamaroon, T. Siritientong, N. Bang, and O. Supasyndh, BMC Nephrol., 13, 119 (2012).CrossRefGoogle Scholar
  24. 24.
    C. J. Park, J. Ryoo, C. S. Ki, J. W. Kim, I. S. Kim, and I. C. Um, Int. J. Biol. Macromol., 119, 821 (2018).CrossRefGoogle Scholar
  25. 25.
    J. H. Lee, Y. S. Bae, S. J. Kim, D. W. Song, Y. H. Park, D. G. Bae, J. H. Choi, and I. C. Um, Int. J. Biol. Macromol., 106, 39 (2018).CrossRefGoogle Scholar
  26. 26.
    D. E. Chung, H. H. Kim, M. K. Kim, K. H. Lee, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 79, 943 (2015).CrossRefGoogle Scholar
  27. 27.
    D. E. Chung, J. H. Lee, H. Kweon, K. G. Lee, and I. C. Um, Int. J. Indust. Entomol., 30, 81 (2015).CrossRefGoogle Scholar
  28. 28.
    B. K. Park and I. C. Um, Fiber. Polym., 16, 1935 (2015).CrossRefGoogle Scholar
  29. 29.
    M. J. Jang and I. C. Um, Int. J. Indust. Entomol., 30, 75 (2015).CrossRefGoogle Scholar
  30. 30.
    J. H. Lee, D. W. Song, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 89, 273 (2016).CrossRefGoogle Scholar
  31. 31.
    I. C. Um, H. Y. Kweon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol., 29, 91 (2001).CrossRefGoogle Scholar
  32. 32.
    H. J. Kim and I. C. Um, Int. J. Biol. Macromol., 67, 387 (2014).CrossRefGoogle Scholar
  33. 33.
    J. S. Ko, C. S. Ki, and I. C. Um, Fiber. Polym., 19, 507 (2018).CrossRefGoogle Scholar
  34. 34.
    B. K. Park and I. C. Um, Int. J. Biol. Macromol., 95, 8 (2017).CrossRefGoogle Scholar
  35. 35.
    Y. N. Jo, B. D. Park, and I. C. Um, Int. J. Biol. Macromol., 81, 936 (2015).CrossRefGoogle Scholar
  36. 36.
    H. J. Kim, M. K. Kim, K. H. Lee, S. K. Nho, M. S. Han, and I. C. Um, Int. J. Biol. Macromol., 104, 294 (2017).CrossRefGoogle Scholar
  37. 37.
    M. L. Gulrajani, “Degumming of Silk” (M. L. Gulrajani Ed.), Silk Dyeing Printing and Finishing, pp.63-95. Department of Textile Technology Indian Institute of Technology, New Delhi, 1988.Google Scholar
  38. 38.
    C. Chung, M. Lee, and E. K. Choe, Carbohydr. Polym., 58, 417 (2004).CrossRefGoogle Scholar
  39. 39.
    B. K. Park and I. C. Um, Int. J. Biol. Macromol., 106, 1166 (2018).CrossRefGoogle Scholar
  40. 40.
    D. E. Chung and I. C. Um, Fiber. Polym., 15, 153 (2014).CrossRefGoogle Scholar
  41. 41.
    M. M. R. Khan, M. Tsukada, Y. Gotoh, H. Morikawa, G. Freddi, and H. Shiozaki, Bioresour. Technol., 101, 8439 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Biofibers and Biomaterials ScienceKyungpook National UniversityDaeguKorea
  2. 2.Institute of Agricultural Science and TechnologyKyungpook National UniversityDaeguKorea

Personalised recommendations