Advertisement

Fibers and Polymers

, Volume 20, Issue 2, pp 421–427 | Cite as

Ultra-High Molecular Weight Polyethylene Fibers/Epoxy Composites: Effect of Fiber Treatment on Properties

  • Weiwei LiEmail author
  • Ming Feng
  • Xiaojing Liu
  • Momo Huang
  • Renliang Ma
Article
  • 12 Downloads

Abstract

The properties of ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced epoxy resin composites were studied and the effects of the fiber surface treatment were investigated. The results showed that the surface treatment increased the roughness, O-containing groups (especially -OH groups), crystallinity and improved the wettability of UHMWPE fibers. The impact strength of the treated UHMWPE fibers/epoxy composites reached the maximum of 92.6 kJ/m2, which was higher than that of pure epoxy and as-received fiber composites. The tensile strength of both as-received and treated fiber composites showed lower than the pure epoxy. However, the tensile modulus was observably increased. The bending strength and modulus of the treated UHMWPE fibers/epoxy composites were 26.2 % and 26.0 %, higher than those of pure epoxy, respectively. The friction coefficients of the two types of composites were both increased. The dynamic mechanical analysis (DMA) results showed that Tg shifted toward higher temperatures and the reduction of tan δ peak of the treated UHMWPE fibers/epoxy composites indicated the adhesion of treated fiber with resin matrix was better than that of as-received fibers, which was in accord with the scanning electron microscope (SEM) analysis. The adding of the treated UHMWPE fibers to the epoxy matrix offered a stabilizing effect against the decomposition.

Keywords

UHMWPE fibers Epoxy composites Properties Surface treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. A. Kang, S. H. Oh, and J. S. Park, Fiber. Polym., 16, 1343 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Jana and W. H. Zhong, J. Compos. Mater., 41, 2897 (2007).CrossRefGoogle Scholar
  3. 3.
    X. M. Fei, F. Q. Zhao, W. Wei, J. Luo, M. Q. Chen, and X. Y. Liu, Polymers-Basel, 8, 314 (2016).CrossRefGoogle Scholar
  4. 4.
    S. P. Lin, J. L. Han, J. T. Yeh, F. C. Chang, and K. H. Hsiehab, Eur. Polym. J., 43, 996 (2007).CrossRefGoogle Scholar
  5. 5.
    S. I. Moon and J. Jang, Compos. Sci. Technol., 59, 487 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Wang, G. Liang, W. Zhao, S. Lü, and Z. Zhang, Appl. Surf. Sci., 253, 668 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Jana and W. H. Zhong, J. Compos. Mater, 41, 2897 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Maity, C. Jacob, C. K. Das, S. Alam, and R. P. Sing, Polym. Test., 27, 581 (2008).CrossRefGoogle Scholar
  9. 9.
    A. Salehi-Khojin, J. J. Stone, and W. H. Zhong, J. Compos. Mater., 41, 1163 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Štefecka, J. Ráhel’, M. Cernák, I. Hudec, M. Mikula, and M. Mazúr, J. Mater. Sci. Lett., 18, 2007 (1999).CrossRefGoogle Scholar
  11. 11.
    D. Delle Side, P. Alifano, V. Nassisi, A. Talà, S. M. Tredici, and L. Velardi, Lasers. Electro-optics. Europe., 1, 1 (2003).Google Scholar
  12. 12.
    A. M. Abdul-Kader, A. Turos, R. M. Radwan, and A. M. Kelany, Appl. Surf. Sci., 255, 7786 (2009).CrossRefGoogle Scholar
  13. 13.
    L. Vaisman, M. F. González, and G. Marom, Polymers-Basel., 44, 1229 (2005).Google Scholar
  14. 14.
    J. Yin and M. Li, Compos. Interface, 1, 10 (2018).Google Scholar
  15. 15.
    M. S. Silverstein, O, Breuer, and H. Dodiuk, J. Appl. Polym. Sci., 52, 1785 (2010).CrossRefGoogle Scholar
  16. 16.
    M. S. Silverstein and O. Breuer, Compos. Sci. Technol., 48, 151 (1993).CrossRefGoogle Scholar
  17. 17.
    W. W. Li, R. P. Li, C. Y. Li, Z. R. Chen, and L. Zhang, Polym. Compos., 38, 1215 (2017).CrossRefGoogle Scholar
  18. 18.
    W. W. Li, M. M. Huang, and R. L. Ma, Polym. Advan. Technol., 29, 1287 (2017).CrossRefGoogle Scholar
  19. 19.
    S. P. Lin, J. L. Han, J. T. Yeh, F. C. Chang, and K. H. Hsieh, J. Appl. Polym. Sci., 104, 655 (2007).CrossRefGoogle Scholar
  20. 20.
    H. J. Liu, Y. N. Pei, D. Xie, X. R. Deng, Y. X. Leng, Y. Jin, and N. Huang, Appl. Surf. Sci., 256, 3941 (2010).CrossRefGoogle Scholar
  21. 21.
    W. W. Li, L. Meng, L. Wang, J. S. Mu, and Q. W. Pan, Surf. Interface Anal., 48, 1316 (2016).CrossRefGoogle Scholar
  22. 22.
    Y. L. Hsieh and X. P. Hu, J. Polym. Sci. B., 35, 623 (1997).CrossRefGoogle Scholar
  23. 23.
    R. Starikov and Schön, Comp. Struct., 55, 1 (2002).CrossRefGoogle Scholar
  24. 24.
    B. D. Agarwal and L. J. Broutman, “Analysis and Performance of Fiber Composites”, pp.134–135, John Wiley & Sons, New York, 1990.Google Scholar
  25. 25.
    J. Zhu and H. Q. Peng, Adv. Funct. Mater., 14, 643 (2004).CrossRefGoogle Scholar
  26. 26.
    V. Fiore, T. Scalici, G. Vitale, and A. Valenza, Mater. Des., 57, 456 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Weiwei Li
    • 1
    Email author
  • Ming Feng
    • 1
  • Xiaojing Liu
    • 1
  • Momo Huang
    • 1
  • Renliang Ma
    • 1
  1. 1.Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical EngineeringNingbo UniversityNingboChina

Personalised recommendations