Fibers and Polymers

, Volume 20, Issue 2, pp 358–374 | Cite as

Simulation of the Optimized Thermal Conductivity of a Rigid Polyurethane Foam during Its Foaming Process

  • Siyu AnEmail author
  • Galen J. Suppes
  • Tushar K. Ghosh


Thermal conductivity (λ) of a rigid polyurethane (PU) foam plays a vital role in determining the performance of thermal insulation. To accurately predict this property for a given recipe in a few seconds is the first step towards striking a balance between compressive strength, λ, and more properties of a foam product in industrial applications during formulation. What experimentally observed from PU closed-cell foams made from PAPI-27 Polymeric Methylene Diphenyl Diisocyanate (PMDI), Voranol 360, and n-pentane were: (1) foam shrinkage and even collapse occurred on both low (typically less than 0.9) and ultra-high (close to 2.0) indexes of isocyanate (IA); (2) to achieve the lowest λ for the best thermal insulation, it was suggested to use the highest IA without any foam shrinkage, the fastest stirring rate under safety, and the least physical blowing agent (PBA) until a sharp turn in the trend of λ; (3) there was a definite link between foam density (ρf), closed cell content (ccc), and λ: (a) a low λ requested a high ρf and ccc (b) a denser foam could be achieved by at least three ways. Increasing the agitation rate had a limit, above which the change in density became insignificant. However, a higher IA and reducing the amount of PBA had always been linear with ρf. (c) ρf was the cornerstone of ccc. In low ρf range, a growth of density gave rise to a distinct improvement of ccc, beyond which ccc reached a plateau for any higher density. The foam thermal conductivity during polymerization was successfully simulated by Matlab with 0.0157 % deviation. λ was initially dominated by the contribution from the resin mixture until the gel reaction time. Then, the dominant was shifted to the contribution by the gas component. The magnitude of thermal radiation was rather low throughout the reaction.


Thermal conductivity Simulation Foam Polyurethane Modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. C. Tu, P. Kiatsimkul, G. Suppes, and F. H. Hsieh, Appl. Polym. Sci., 105, 453 (2007).CrossRefGoogle Scholar
  2. 2.
    Y. C. Tu, G. Suppes, and F. H. Hsieh, Appl. Polym. Sci., 109, 537 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. C. Tu, H. Fan, G. Suppes, and F. H. Hsieh, Appl. Polym. Sci., 114, 2577 (2009).CrossRefGoogle Scholar
  4. 4.
    H. Fan, A. Tekeei, G. J. Suppes, and F. H. Hsieh, Int. J. Polym. Sci., 2012 (2012).Google Scholar
  5. 5.
    W. Fang, Y. Tang, H. Zhang, and W. Tao, J. Wuhan Univ. Technol. Sci. Ed., 32, 703 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Ferkl, M. Toulec, E. Laurini, S. Pricl, M. Fermeglia, S. Auffarth, B. Eling, V. Settels, and J. Kosek, Chem. Eng. Sci., 172, 323 (2017).CrossRefGoogle Scholar
  7. 7.
    H. Zhang, W. Z. Fang, Y. M. Li, and W. Q. Tao, Appl. Therm. Eng., 115, 528 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, M. J. Gordon, A. Tekeei, F. H. Hsieh, and G. J. Suppes, Appl. Polym. Sci., 130, 1131 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, F. Zhong, A. Tekeei, and G. J. Suppes, Appl. Catal. A Gen., 469, 229 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Al-Moameri, Y. Zhao, R. Ghoreishi, and G. J. Suppes, Ind. Eng. Chem. Res., 55, 2336 (2016).CrossRefGoogle Scholar
  11. 11.
    R. Ghoreishi and G. J. Suppes, RSC Adv., 5, 68361 (2015).CrossRefGoogle Scholar
  12. 12.
    Sigma-Aldrich, “TCPP, Mixture of Isomers” https:// =en&region=US.Google Scholar
  13. 13.
    Momentive Company, “Niax* Silicone L-6900” https:// niax-silicone-l-6900/#.Google Scholar
  14. 14.
    Dow Plastics, PAPI-27 Polymeric MDI, Form No. PA-26-333-0301 (2001).Google Scholar
  15. 15.
    Dow Plastics, Voranol 360, Form No. 109–01273 (2001).Google Scholar
  16. 16.
    R. Herrington and K. Hock, “Dow Polyurethanes”, 2nd ed., pp. 2.2, Dow Chemical Company, 1997.Google Scholar
  17. 17.
    ASTM C518 (2015).Google Scholar
  18. 18.
    ASTM D1622 (2014).Google Scholar
  19. 19.
    ASTM D6226 (2015).Google Scholar
  20. 20.
    A. T. Huber and L. J. Gibson, J. Mater. Sci., 23, 3031 (1988).CrossRefGoogle Scholar
  21. 21.
    J. R. Dawson and J. B. Shortall, J. Mater. Sci., 17, 220 (1982).CrossRefGoogle Scholar
  22. 22.
    N. C. Hilyard and A. Cunningham, “Low Density Cellular Plastics: Physical Basis of Behaviour”, pp.115–124, Chapman & Hall, 1994.CrossRefGoogle Scholar
  23. 23.
    M. C. Hawkins, B. O’Toole, and D. Jackovich, J. Cell. Plast., 41, 267 (2005).CrossRefGoogle Scholar
  24. 24.
    L. J. Gibson and M. F. Ashby, “Cellular Solids: Structure and Properties”, 2nd ed., pp.202–207, Cambridge University Press, 1997.CrossRefGoogle Scholar
  25. 25.
    B. E. Poling, J. M. Prausnitz, and J. P. O’connell, “The Properties of Gases and Liquids”, 5th ed., pp.10.56–10.64, McGraw-Hill, 2001.Google Scholar
  26. 26.
    C. L. Yaws, “Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficient of Liquids and Gases”, p.68, 96, Gulf Publishing Company, 1995.Google Scholar
  27. 27.
    S. Devotta and V. R. Pendyala, Ind. Eng. Chem. Res., 31, 2042 (1992).CrossRefGoogle Scholar
  28. 28.
    Wikipedia, “Joback Method”, wiki/Joback_method.Google Scholar
  29. 29.
    M. Nagvekar and T. E. Daubert, Ind. Eng. Chem. Res., 26, 1362 (1987).CrossRefGoogle Scholar
  30. 30.
    S. An, L. Shen, and G. J. Suppes, Fiber. Polym., 18, 1031 (2017).CrossRefGoogle Scholar
  31. 31.
    A. L. Lindsay and L. A. Bromley, Ind. Eng. Chem., 42, 1508 (1950).CrossRefGoogle Scholar
  32. 32.
    J. D. Pandey and S. R. Prajapati, Procedings of Indian National Science Academy, 45, 372 (1979).Google Scholar
  33. 33.
    Y. Nawab, P. Casari, N. Boyard, and F. Jacquemin, J. Mater. Sci., 48, 2394 (2013).CrossRefGoogle Scholar
  34. 34.
    H. Al-Moameri, R. Ghoreishi, Y. Zhao, and G. J. Suppes, RSC Adv., 5, 17171 (2015).CrossRefGoogle Scholar
  35. 35.
    F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, 6th ed., pp.587–590, John Wiley & Sons, Inc., 2007.Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations