Advertisement

Fibers and Polymers

, Volume 20, Issue 2, pp 450–458 | Cite as

Airbag Damping of the Hollow Fiber Composite with Different Porosity in the Fiber Wall

  • Mingjun LiEmail author
  • Guoqun Zhou
  • Yongwen Xu
  • Guifang Wang
Article
  • 36 Downloads

Abstract

The inner cavity of the hollow fiber with porosity in its fiber wall constitutes a damping airbag with slow passage of gas. The magnitude of the damping value of the airbag and its damping influencing factors need to be researched, which adds the nonlinear airbag damping to the damping of the raw materials and increases the total damping loss factor of the structure. In this paper, the hollow fiber damping materials with different hollow inside diameters, different fiber wall thicknesses, different wall porosity and different wall pore structure were prepared by adjusting and controlling the technological parameters of the hollow fiber spinning and the formula of spinning casting solution. Meanwhile, we have a comprehensive study on the relationship between the factors and performances. It was found and confirmed that the size of the airbag, the wall pore structure, the wall porosity and the wall thickness of the airbag were the most crucial parameters, which can affect the additional damping of the airbag in the hollow fiber. And the controlling method of the four key parameters was also obtained. Finally, the mechanism and effect of hollow fiber airbag damping was proved.

Keywords

Hollow fiber Airbag damping Hollow inside diameter Porosity Polymer composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Koch, F. Duvigneau, R. Orszulik, R. Orszulik, U. Gabbert, and E. Woschke, J. Sound Vib., 393, 30 (2017).CrossRefGoogle Scholar
  2. 2.
    L. Zoghaib and P. O. Mattei, J. Sound Vib., 333, 7109 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Yang, X. Yang, and C. He, J. Mater. Lett., 209, 68 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Li, C. Yan, Y. Xu, and Y. Qin, J. Appl. Polym. Sci., 129, 1334 (2013).CrossRefGoogle Scholar
  5. 5.
    A. Kainz, W. Hortschitz, J. Schalko, A. Jachimowicz, and F. Keplinger, Sensor Actuat. A-Phys., 236, 357 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Sadeghi and A. Esfandiari, Fiber. Polym., 14, 556 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Sadeghi and A. Esfandiari, Materiali in Tehnologije, 46, 695 (2012).Google Scholar
  8. 8.
    A. Esfandiari, H. Nazokdast, A.-S. Rashidi, and M.-E. Yazdanshenas, J. Appl. Sci., 8, 545 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Zuo and T. S. Chung, J. Desal., 417, 94 (2017).CrossRefGoogle Scholar
  10. 10.
    J. Gao, Z. Thong, K. Y. Wang, and T. S. Chung, J. Membr. Sci., 541, 413 (2017).CrossRefGoogle Scholar
  11. 11.
    A. Dastbaz, J. Karimi-Sabet, H. Ahadi, and Y. Amini, J. Desal., 424, 62 (2017).CrossRefGoogle Scholar
  12. 12.
    L. García-Fernández, C. García-Payo, and M. Khayet, Appl. Surf. Sci., 416, 932 (2017).CrossRefGoogle Scholar
  13. 13.
    N. S. Karode, A. Poudel, L. Fitzhenry, S. Matthews, P. R. Walsh, and A. B. Coffey, Polym. Test, 62, 268 (2017).CrossRefGoogle Scholar
  14. 14.
    Q. F. Alsalhy, H. A. Salih, S. Simone, M. Zablouk, E. Drioli, and A. Figoli, J. Desal., 345, 21 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Speiser, S. Henzler, U. Hageroth, A. Renfftlen, A. Müller, and D. Schawaller, Carbon, 63, 554 (2013).CrossRefGoogle Scholar
  16. 16.
    H. Mevada and D. Patel, J. Procedia Eng., 144, 110 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Wesolowski and E. Barkanov, Measurement, 85, 239 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Bao and H. Yang, Sensor Actuat. A-Phys., 136, 3 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Kainz, W. Hortschitz, J. Schalko, A. Jachimowicz, and F. Keplinger, Sensor Actuat. A-Phys., 236, 357 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Zhu, J. Yang, Y. Zhang, and X. Feng, J. Sound Vib., 408, 87 (2017).CrossRefGoogle Scholar
  21. 21.
    H. Tsay, J. Acoust. Soc. Am., 120, 2686 (2006).CrossRefGoogle Scholar
  22. 22.
    Q. F. Alsalhy, H. A. Salih, S. Simone, M. Zablouk, E. Drioli, and A. Figoli, Desalination, 345, 21 (2014).CrossRefGoogle Scholar
  23. 23.
    L. García-Fernández, M. C. García-Payo, and M. Khayet, J. Membr. Sci., 542, 469 (2017).CrossRefGoogle Scholar
  24. 24.
    A. V. Bildyukevich, T. V. Plisko, A. S. Liubimova, W. Volkov, and W. Usosky, J. Membr. Sci., 524, 537 (2017).CrossRefGoogle Scholar
  25. 25.
    P. Y. Zhang, Y. L. Wang, Z. L. Xu, and H. Yang, Desalination, 278, 186 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Mingjun Li
    • 1
    Email author
  • Guoqun Zhou
    • 1
  • Yongwen Xu
    • 2
  • Guifang Wang
    • 1
  1. 1.College of Environmental and Chemical Engineering of Nanchang Hangkong UniversityNanchangChina
  2. 2.College of Materials Science and Engineering of Nanchang Hangkong UniversityNanchangChina

Personalised recommendations