Fibers and Polymers

, Volume 20, Issue 2, pp 293–301 | Cite as

Investigation on the Preparation and Adsorption Performance of Bamboo Fiber Based Activated Carbon

  • Qing Zhang
  • Yue Zeng
  • Xiuyun Xiao
  • Penghu Deng
  • Qing He
  • Tonghua ZhangEmail author


In this work, an approach was explored to make natural fiber based activated carbon with high adsorption capacity for treating dyeing wastewater. Bamboo fiber based activated carbon (BFAC) was prepared by bamboo fiber extracted from bamboo strips by extracting technique. An orthogonal experiment was carried out to obtain optimum preparation condition for the best dye adsorption. The microstructures of BFAC were characterized by scanning electron microscopy, N2 adsorption-desorption analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. Adsorption mechanism of BFAC to methylene blue (MB) was studied and the adsorption isotherm followed the Langmuir model, with maximum monolayer adsorption capacity of 651.7 mg g-1. The adsorption kinetic was better described by the pseudo-second-order model. Microstructure characterization showed lots of opened pores and cracks with different size on BFAC, with Brunauer-Emmett-Teller (BET) surface area of 1370 m2 g-1 and total pore volume of 0.9411 cm3 g-1. The analysis indicated that cellulose crystal of bamboo fiber was severely destroyed in the preparation process, which could contribute to the formation of pores. Moreover, -OH and -C=O functional groups on BFAC are beneficial for adsorbing MB in aqueous solution. As a result, adopting bamboo fiber may help form BFAC with high BET surface area, which proved to be an effective idea to prepare activated carbon with high adsorption performance.


Bamboo fiber Activated carbon Taguchi method MB adsorption Structural properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Li, Q. Du, T. Liu, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, and L. Xia, Carbohydr. Polym., 95, 501 (2013).CrossRefGoogle Scholar
  2. 2.
    M. S. Ur Rehman, I. Kim, and J. I. Han, Carbohydr. Polym., 90, 1314 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Ghaedi, A. M. Ghaedi, M. Hossainpour, A. Ansari, M. H. Habibi, and A. R. Asghari, J. Ind. Eng. Chem., 20, 1641 (2014).CrossRefGoogle Scholar
  4. 4.
    A. F. Hassan, A. M. Abdelmohsen, and M. M. Fouda, Carbohydr. Polym., 102, 192 (2014).CrossRefGoogle Scholar
  5. 5.
    E. Altintig, H. Altundag, M. Tuzen, and A. Sari, Chem. Eng. Res. Des., 122, 151 (2017).CrossRefGoogle Scholar
  6. 6.
    M. A. Aghdam, H. R. Kariminia, and S. Safari, Desalin. Water Treat., 57, 9698 (2016).CrossRefGoogle Scholar
  7. 7.
    C. Tsioptsias, G. Lionta, and P. Samaras, Environ. Technol. Lett., 38, 1120 (2017).CrossRefGoogle Scholar
  8. 8.
    V. K. Gupta and Suhas, J. Environ. Manage., 90, 2313 (2009).CrossRefGoogle Scholar
  9. 9.
    S. J. Hosseini, S. N. Kokhdan, A. M. Ghaedi, and S. S. Moosavian, Fresen. Environ. Bull., 20, 219 (2011).Google Scholar
  10. 10.
    Z. Sun, X. Duan, C. Srinivasakannan, and X. Wang, Sci. Adv. Mater., 10, 724 (2018).CrossRefGoogle Scholar
  11. 11.
    M. A. Islam, M. J. Ahmed, W. A. Khanday, M. Asif, and B. H. Hameed, J. Environ. Manage., 203, 237 (2017).CrossRefGoogle Scholar
  12. 12.
    L. Lin, S. R. Zhai, Z. Y. Xiao, Y. Song, Q. D. An, and X. W. Song, Bioresour. Technol., 136, 437 (2013).CrossRefGoogle Scholar
  13. 13.
    P. Nowicki, J. Kazmierczak-Razna, and R. Pietrzak, Mater. Des., 90, 579 (2015).CrossRefGoogle Scholar
  14. 14.
    H. Xiao, H. Peng, S. Deng, X. Yang, Y. Zhang, and Y. Li, Bioresour. Technol., 111, 127 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Yang, B. Fei, J. Ma, X. Liu, S. Yang, and G. Tian, Carbohydr. Polym., 180, 385 (2018).CrossRefGoogle Scholar
  16. 16.
    P Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Mater. Des., 63, 820 (2014).CrossRefGoogle Scholar
  17. 17.
    Z. Yuan, W. Wang, J. Zhang, L. Peng, and A. Wang, Chem. Eng. J., 262, 390 (2015).CrossRefGoogle Scholar
  18. 18.
    E. N. E. Qada, S. J. Allen, and G. M. Walker, Chem. Eng. J., 135, 174 (2008).CrossRefGoogle Scholar
  19. 19.
    N. Kannan and M. M. Sundaram, Dyes Pigment, 51, 25 (2001).CrossRefGoogle Scholar
  20. 20.
    G. Zhu, X. Xing, J. Wang, and X. Zhang, J. Mater. Sci., 52, 1 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Langergren and B. K. Svenska, Veternskapsakad Hand., 24, 1 (1898).Google Scholar
  22. 22.
    G. McKay and Y. S. Ho, Process Biochem., 34, 451 (1999).CrossRefGoogle Scholar
  23. 23.
    O. Üner, Ünal Geçgel, and Y. Bayrak, Water Air Soil Poll., 227, 1 (2016).CrossRefGoogle Scholar
  24. 24.
    I. Langmuir, J. Am. Chem. Soc., 183, 102 (1916).Google Scholar
  25. 25.
    H. M. F. Freundlich, J. Phy. Chem., 57, 385 (1906).Google Scholar
  26. 26.
    E. G. Lemraski, Phys. Chem. Res., 5, 81 (2016).Google Scholar
  27. 27.
    A. H. Jawad, R. A. Rashid, K. Ismail, and S. Sabar, Desalin. Water Treat., 74, 326 (2017).CrossRefGoogle Scholar
  28. 28.
    I. Tan, A. L. Ahmad, and B. H. Hameed, Desalination, 225, 13 (2008).CrossRefGoogle Scholar
  29. 29.
    O. P. Jr, A. L. Cazetta, I. P. A. F. Souza, K. C. Bedin, A. C. Martins, T. L. Silva, and V. C. Almeida, J. Ind. Eng. Chem., 20, 4401 (2014).CrossRefGoogle Scholar
  30. 30.
    Y. Ma, Waste Biomass Valori., 8, 549 (2017).CrossRefGoogle Scholar
  31. 31.
    C. Cheng, J. Zhang, Y. Mu, J. Gao, Y. Feng, H. Liu, Z. Guo, and C. Zhang, J. Anal. Appl. Pyrol., 108, 41 (2014).CrossRefGoogle Scholar
  32. 32.
    Y. J. Zhang, Z. J. Xing, Z. K. Duan, M. Li, and Y. Wang, Appl. Surf. Sci., 315, 279 (2014).CrossRefGoogle Scholar
  33. 33.
    M. A. Islam, A. Benhouria, M. Asif, and B. H. Hameed, J. Taiwan Inst. Chem. E., 52, 57 (2015).CrossRefGoogle Scholar
  34. 34.
    C. Yang, Y. Liu, C. Ma, M. Norton, and J. Qiao, Waste Biomass Valori., 6, 1029 (2015).CrossRefGoogle Scholar
  35. 35.
    S. S. A. Syed-Hassan and M. S. M. Zaini, Korean J. Chem. Eng., 33, 2502 (2016).CrossRefGoogle Scholar
  36. 36.
    Z. Wang, J. Wu, T. He, and J. Wu, Bioresour. Technol., 167, 551 (2014).CrossRefGoogle Scholar
  37. 37.
    A. D. rench, Cellulose, 21, 885 (2014).CrossRefGoogle Scholar
  38. 38.
    B. Lu, L. Hu, H. Yin, X. Mao, W. Xiao, and D. Wang, Int. J. Hydrogen Energ., 41, 18713 (2016).CrossRefGoogle Scholar
  39. 39.
    M. Chen, D. Yan, X. Zhang, Z. Yu, G. Zhu, and Y. Zhao, Mater. Lett., 196, 276 (2017).CrossRefGoogle Scholar
  40. 40.
    K. Kante, C. Nieto-Delgado, J. R. Rangel-Mendez, and T. J. Bandosz, J. Hazard. Mater., 201, 141 (2012).CrossRefGoogle Scholar
  41. 41.
    A. Regti, M. R. Laamari, S. E. Stiriba, and M. E. Haddad, Appl. Water Sci., 7, 4099 (2017).CrossRefGoogle Scholar
  42. 42.
    A. Nasrullah, A. H. Bhat, A. Naeem, and M. Danish, Int. J. Biol. Macromol., 107, 1792 (2018).CrossRefGoogle Scholar
  43. 43.
    J. L. Li, K. Li, T. H. Zhang, S. Wang, Y. Jiang, Y. Bao, and M. Y. Tie, Fiber. Polym., 17, 880 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Qing Zhang
    • 1
    • 2
  • Yue Zeng
    • 1
  • Xiuyun Xiao
    • 1
  • Penghu Deng
    • 1
  • Qing He
    • 1
  • Tonghua Zhang
    • 1
    • 3
    Email author
  1. 1.College of Textiles & GarmentsSouthwest University, Chongqing Engineering Research Center of Biomaterial Fiber and Modern TextileChongqingChina
  2. 2.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  3. 3.State Key Laboratory of Bio-Fibers and Eco-TextilesQingdao UniversityQingdaoChina

Personalised recommendations