Fibers and Polymers

, Volume 20, Issue 10, pp 2009–2016 | Cite as

Improved Fluorescence of Fluorene Polymer in Solid State

  • Xiaoyan ZhaoEmail author
  • Shuai Zhang
  • Chen Huang
  • Chenyi Wang


Fluorene-containing poly(aryl ether nitrile) (FPAN) was prepared by a typically aromatic nucleophilic substitution polymerization. The chemical structure of FPAN was confirmed by FTIR and 1H NMR spectroscopy. Different morphologies of FPAN fibers could obtain through electrospinning. The light-emission properties of polymer in solution, casting film and fibrous membrane were examined by spectrofluorometry. This polymer had good thermal properties with glass-transition temperatures at 280 °C and 10 % weight loss temperatures in the range of 497–502 °C. Additionally, the contact angles in the thin-film state and electrospun fiber membranes were examined. The water contact angle of fiber membrane was improved compared to that of casting film which could reach to the 137 °. The resulting material exhibited stable luminescent intensity, possessed considerable thermal stability, and could be facilely processed into device for optical field applications.


Polyfluorene Electrospun fibers Photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded by the Key Research and Development Plan Project of Jiangsu Province (BE2017645) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    T. L. Wu, C. H. Yeh, W. T. Hsiao, P. Y. Huang, M. J. Huang, Y. H. Chiang, C. H. Cheng, R. S. Liu, and P. W. Chiu, ACS Appl. Mater. Interf., 9, 14998 (2017).CrossRefGoogle Scholar
  2. 2.
    S. P. Mucur, C. Kök, H. Bilgili, B. Canımkurbey, and S. Koyuncu, Polymer, 151, 101 (2018).CrossRefGoogle Scholar
  3. 3.
    J. Y. Chen, C. C. Kuo, C. S. Lai, W. C. Chen, and H. L. Chen, Macromolecules, 44, 2883 (2011).CrossRefGoogle Scholar
  4. 4.
    C. Z. Zhou, W. L. Wang, K. K. Lin, Z. K. Chen, and Y. H. Lai, Polymer, 45, 2271 (2004).CrossRefGoogle Scholar
  5. 5.
    J. P. Malval and I. Leray, Chem. Phys. Lett., 501, 54 (2010).CrossRefGoogle Scholar
  6. 6.
    F. Lefevre, P. Juneau, and R. Izquierdo, Sensor. Actuat. B-Chem. 221, 1314 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Liu, L. Li, and Q. B. Pei, Macromolecules, 44, 2451 (2011).CrossRefGoogle Scholar
  8. 8.
    H. M. Wang, S. H. Hsiao, G. S. Liou, and C. H. Sun, J. Polym. Sci. Part A Pol. Chem., 48, 4775 (2010).CrossRefGoogle Scholar
  9. 9.
    D. J. Liaw, K. L. Wang, F. C. Chang, K. R. Lee, and J. Y. Lai, J. Polym. Sci. Part A Pol. Chem., 45, 2367 (2007).CrossRefGoogle Scholar
  10. 10.
    G. Zhou, Y. X. Cheng, L. X. Wang, X. B. Jing, and F. S. Wang, Macromolecules, 38, 2148 (2005).CrossRefGoogle Scholar
  11. 11.
    V. H. K. Fell, A. Mikosch, A. K. Steppert, W. Ogieglo, E. Senol, D. Canneson, M. Bayer, F. Schoenebeck, A. Greilich, and A. J. C. Kuehne, Macromolecules, 50, 2338 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Yan, N. W. Sun, F. F. Li, X. T. Jia, C. Wang, and D. M. Chao, ACS Appl. Mater. Interf., 9, 6497 (2017).CrossRefGoogle Scholar
  13. 13.
    W. F. Su, T. T. Chen, and Y. Chen, Polymer, 51, 1555 (2010).CrossRefGoogle Scholar
  14. 14.
    S. Saimani, A. Kumar, M. M. Dal-Cin, and G. Robertson, J. Membr. Sci., 374, 102 (2011).CrossRefGoogle Scholar
  15. 15.
    X. Y. Li, X. F. Wang, D. S. Yao, J. Jiang, X. Guo, Y. H. Gao, Q. Li, and C. Y. Shen, Colloids Surface B., 171, 461 (2018).CrossRefGoogle Scholar
  16. 16.
    X. Y. Zhao, C. Y. Wang, W. J. Xu, and M. F. Zhu, Fiber. Polym., 14, 693 (2013).CrossRefGoogle Scholar
  17. 17.
    X. Q. Han, Q. X. Chen, H. G. Lu, J. B. Ma, and H. Gao, ACS Appl. Mater. Inter., 7, 28494 (2015).CrossRefGoogle Scholar
  18. 18.
    C. C. Cheng, C. H. Chien, Y. C. Yen, Y. S. Ye, F. H. Ko, C. H. Lin, and F. C. Chang, Acta Mater., 57, 1938 (2009).CrossRefGoogle Scholar
  19. 19.
    H. Q. Yu, T. Li, B. J. Chen, Y. B. Wu, and Y. Li, J. Colloid Interf. Sci., 400, 175 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Z. Mao, J. L. Bai, M. X. Zhang, H. Zhao, G. Z. Sun, X. J. Pan, Z. X. Zhang, J. Y. Zhou, and E. Q. Xie, Phys. Chem. Chem. Phys., 19, 9223 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Wang, X. Li, W. K. Hua, L. D. Shen, X. F. Yu, and X. F. Wang, ACS Appl. Mater. Interf., 8, 23995 (2016).CrossRefGoogle Scholar
  22. 22.
    S. Cheng, X. F. Li, S. B. Xie, Y. Chen, and L. J. Fan, J. Colloid Interf. Sci., 356, 92 (2011).CrossRefGoogle Scholar
  23. 23.
    C. C. Kuo, C. H. Lin, and W. C. Chen, Macromolecules, 40, 6959 (2007).CrossRefGoogle Scholar
  24. 24.
    D. Di Camillo, V. Fasano, F. Ruggieri, S. Santucci, L. Lozzi, A. Camposeo, and D. Pisignano, Nanoscale, 5, 11637 (2013).CrossRefGoogle Scholar
  25. 25.
    X. Y. Zhao, X. Xu, Y. Liu, and C. Y. Wang, Polym. Eng. Sci., 58, 1945 (2018).CrossRefGoogle Scholar
  26. 26.
    G. Morello, M. Moffa, S. Girardo, A. Camposeo, and D. Pisignano, Adv. Funct. Mater., 24, 5225 (2015).CrossRefGoogle Scholar
  27. 27.
    D. Tu, S. Pagliara, A. Camposeo, L. Persano, R. Cingolani, and D. Pisignano, Nanoscale, 2, 2217 (2010).CrossRefGoogle Scholar
  28. 28.
    K. Z. Yin, L. F. Zhang, C. L. Lai, L. L. Zhong, S. Smith, H. Fong, and Z. T. Zhu, J. Mater. Chem., 21, 444 (2011).CrossRefGoogle Scholar
  29. 29.
    M. V. S. Rao and N. E. Dweltz, Text. Res. J., 55, 247 (1985).CrossRefGoogle Scholar
  30. 30.
    M. Richard-Lacroix and C. Pellerin, Macromolecules, 46, 9473 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Rawal, Langmuir, 28, 3285 (2012).CrossRefGoogle Scholar
  32. 32.
    H. Z. Tang, H. Wang, and J. H. He, J. Phys. Chem. C, 113, 14220 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Xiaoyan Zhao
    • 1
    Email author
  • Shuai Zhang
    • 1
  • Chen Huang
    • 1
  • Chenyi Wang
    • 2
  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  2. 2.School of Materials Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations